The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kucharski, Z.; Rolski, D. Clinical application of resilient materials for relining of dentures. Prot. Stomatol. 2011, 3, 234–240. [Google Scholar]
- Santawisuk, W.; Kanchanavasita, W.; Sirisinha, C.; Harnirattisai, C. Mechanical properties of experimental silicone soft lining materials. Dent. Mater. J. 2013, 32, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, Z. Rebasing of removable dentures with use of resilient materials: Causes of failures. Prot. Stomatol. 2012, 1, 38–43. [Google Scholar] [CrossRef]
- Kucharski, Z. Physical properties of resilient materials in prosthodontics. Prot. Stomatol. 2008, 3, 209–216. [Google Scholar]
- Murata, H.; Hamada, T.; Sadamori, S. Relationship between viscoelastic properties of soft denture liners and clinical efficacy. Jpn. Dent. Sci. Rev. 2008, 44, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.T.; Jones, J.D. Soft liners. Dent. Clin. N. Am. 2004, 48, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Bail, M.; Jorge, J.H.; Urban, V.M.; Campanha, N.H. Surface roughness of acrylic and silicone-based soft liners: In vivo study in a rat model. J. Prosthodont. 2014, 23, 126–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Yang, H.S.; Chun, M.G.; Park, Y.J. Shore hardness and tensile bond strength of long-term soft denture lining materials. J. Prosthet. Dent. 2014, 112, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Taguchi, N.; Hamada, T.; Mccabe, J.F. Dynamic viscoelastic properties and the age changes of long-term soft denture liners. Biomaterials 2000, 21, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- El-Hadary, A.; Drummond, J.L. Comparative study of water sorption, solubility, and tensile bond strength of two lining materials. J. Prosthet. Dent. 2000, 83, 356–361. [Google Scholar] [CrossRef]
- Gawlak, D.; Mańka-Malara, K.; Zelik, D.; Łojszczyk, R. Denture relining using the high-temperature injection technique. A case report. Protet. Stomatol. 2014, 2, 128–133. [Google Scholar] [CrossRef]
- Kochanek-Karpińska, M.; Karpiński, A. Miękkie podścielenie dolnej protezy całkowitej. Dental Labor 2012, 1, 94–98. [Google Scholar]
- Gawlak, D.; Łuniewska, J.; Stojak, W.; Hovhannisyan, A.; Stróżyńska, A.; Mańka-Malara, K.; Adamiec, M.; Rysz, A. The prevalence of orodental trauma during epileptic seizures in terms of dental treatment—survey study. Neurol. Neurochir. Pol. 2017, 51, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Mierzwińska-Nastalska, E.; Rusiniak-Kubik, K.; Gontek, R.; Okoński, P. The influence of denture hygiene on the oral candidiasis. Nowa. Stom. 2000, 14, 52–55. [Google Scholar]
- Glass, R.; Bullard, J.; Conrad, R. The contamination of protective mouthguards: A characterization of the microbiota found in football players’ protective mouthguards as compared to oral microbiota found in first-year medical students. Amer. Dent. Inst. For Con. Educ. J. 2006, 93, 23–28. [Google Scholar]
- Glass, R.; Bullard, J.; Goodson, L.; Conrad, R. Microbial contamination of protective mouth-guards in hockey players: An in vivo study. Compend. Cont. Educ. Dent. 2001, 22, 1093–1108. [Google Scholar]
- Kang, S.H.; Lee, H.J.; Hong, S.H.; Kim, K.H.; Kwon, T.Y. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontol. Scand. 2013, 71, 241–248. [Google Scholar] [CrossRef]
- Vural, C.; Ozdemir, G.; Kurtulmus, H.; Kumbuloglu, O.; Ozcan, M. Comparative effects of two different artificial body fluids on Candida albicans adhesion to soft lining materials. Dent. Mat. J. 2010, 29, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Pires, F.R.; Santos, E.B.; Boban, P.R.; De Almeida, O.P.; Lopes, M.A. Denture stomatitis and salivary Candida in Brazilian edentulous patients. J. Oral Rehabil. 2002, 29, 1115–1119. [Google Scholar] [CrossRef]
- Verran, J.; Maryan, C.J. Retention of Candida albicans on acrylic resin and silicone of different surface topography. J. Prosthet. Dent. 1997, 77, 535–539. [Google Scholar] [CrossRef]
- Bulad, K.; Taylor, R.L.; Verran, J.; McCord, J.F. Colonization and penetration of denture soft lining materials by Candida albicans. Dent. Mater. 2004, 20, 167–175. [Google Scholar] [CrossRef]
- Valentini, F.; Souza Luz, M.; Boscato, N.; Pereira-Cenci, T. Biofilm formation on denture liners in randomised controlled in situ trial. J. Dent. 2013, 41, 420–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreve, S.; Oliveira, V.C.; Bachmann, L.; Alves, O.L.; Dos Reis, A.C. Influence of AgNO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of soft denture liner. Sci. Rep. 2019, 11889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makvandi, P.; Gu, J.T.; Zare, E.N.; Ashtari, B.; Moeini, A.; Tay, F.R.; Niu, L.N. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater. 2020, 101, 69–101. [Google Scholar] [CrossRef]
- Cierech, M.; Szerszeń, M.; Wojnarowicz, J.; Łojkowski, W.; Kostrzewa-Janicka, J.; Mierzwińska-Nastalska, E. Preparation and Characterysation of Poly(methyl metacrylate)-Titanium Dioxide Nanocomposites for Denture Bases. Polymers 2020, 12, 2655. [Google Scholar] [CrossRef] [PubMed]
- Mańka-Malara, K.; Panasiewicz, A.; PKacprzyk, M.; Gawryszewska, M.; Mierzwińska-Nastalska, E.; Gawlak, D. The effect of decontamination procedures on elastic polymeric materials used in dental mouthguards fabrication. Acta Bioeng. Biomech. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Bal, B.T.; Yavuzyilmaz, H.; Yücel, M. A pilot study to evaluate the adhesion of oral microorganisms to temporary soft lining materials. J. Oral Sci. 2008, 50, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, D.N.; Goiato, M.C.; Zuccollotti, B.C.; Moreno, A.; dos Santos, D.M.; Pesqueira, A.A. Effect of thermocycling on hardness absorption, solubility and colour change of soft liners. Gerodontology 2012, 29, 215–219. [Google Scholar] [CrossRef]
- Bangera, M.K.; Kotian, R.; Ravishankar, N. Effect of titanium dioxide nanoparticle reinforcement on flexural strength of denture base resin. Jpn. Dent. Sci. Rev. 2020, 56, 68–76. [Google Scholar] [CrossRef]
- Mahboub, F.; Salehsaber, F.; Parnia, F.; Gharekhani, V.; Kananizadeh, Y.; Taghizadeh, M. Effect of denture cleansing agents on tensile and shear bond strengths of soft liners to acrylic denture base. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Farzin, M.; Bahrani, F.; Adelpour, E. Comparison of the effect of two denture cleaners on tensile bond strength of a denture liner. J. Dent. Shiraz. Univ. Med. Sci. 2013, 14, 130–135. [Google Scholar]
- Oliveira, L.V.; Mesquita, M.F.; Henriques, G.E.P.; Consani, R.L.X.; Fragoso, W.S. The compatibility of denture cleansers and resilient liners. J. Appl. Oral Sci. 2006, 14, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.S.; Singh, S.; Hari, P.A.; Amarnath, G.S.; Kundapur, V.; Pasha, N.; Anand, M. Evaluate the effect of commertially available denture cleaners on surface hardness and roughness of denture liners at various time intervals. Int. J. Biomed. Sci. 2016, 12, 130–142. [Google Scholar]
- Pahuja, R.K.; Garg, S.; Bansal, S.; Dang, R.H. Effect of denture cleaners on surface hardness of resilient denture liners at various time intervals—an in vitro study. J. Adv. Prosthodont. 2013, 5, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.B.; Lim, Y.; Youn, H.I.; Chang, B.M.; Lee, J.; Shin, S.W. Effect of denture cleansers on Candida albicans biofilm formation over resilient liners. J. Adv. Prosthodont. 2014, 6, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.P.C.; Senna, P.M.; da Silva, W.J.; Del Bel Cury, A.A. Long-term efficacy of denture cleansers in preventing Candida spp. biofilm recolonization on liner surface. Braz. Oral Res. 2010, 24, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Badaró, M.M.; Leite-Fernandes, V.M.F.; Martin, L.T.; Oliveira, V.C.; Watanabe, E.; Paranhos, H.F.; Silva-Lovato, C.H. Antibiofilm activity of an experimental Rinus Communis Dentifrice on soft denture liners. Braz. Dent. J. 2019, 30, 252–258. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Changes in properties of short-term-use soft liners after thermocycling. J. Oral Rehabil. 2004, 31, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Arioli Filho, J.N.; Dos Santos, P.H.; Nogueira, S.S.; Batista, A.U. Effect of disinfection treatments on the hardness of soft denture liner materials. J. Prosthodont. 2007, 16, 101–106. [Google Scholar] [CrossRef]
- Mancuso, D.N.; Goiato, M.C.; Zuccolotti, B.C.R.; Moreno, A.; dos Santos, D.M. Evaluation of hardness and color change of soft liners after accelerated ageing. Prim. Dent. Care 2009, 16, 127–130. [Google Scholar] [CrossRef]
- Machado, A.L.; Breeding, L.C.; Vergani, C.E.; da Cruz Perez, L.E. Hardness and surface roughness of reline and denture base acrylic resins after repeated disinfection procedures. J. Prosthetic. Dent. 2009, 102, 115–122. [Google Scholar] [CrossRef]
- Basavarajappa, S.; Al-Kheraif, A.A.; ElSharawy, M.; Vallittu, P.K. Effect of solvent/disinfectant ethanol on the micro-surface structure and properties of multiphase denture polymers. J. Mech. Behav. Biomed. Mater. 2015, 54, 1–7. [Google Scholar] [CrossRef]
- Asad, T.; Watkinson, A.C.; Huggett, R. The effect of disinfecting procedures on flexural properties of denture base acrylics. J. Prosthetic. Dent. 1992, 68, 191–195. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Kimpara, E.T.; Mancini, M.N.G.; Balducci, I.; Jorge, A.O.C.; Koga-Ito, C.E. Effectiveness of six different disinfectants on removing five microbial species and effects on the topographic characteristics of acrylic resin. J. Prosthodont. 2008, 17, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Orsi, I.A.; Andrade, V.G.; Bonato, P.S.; Raimundo, L.B.; Herzog, D.S.; Borie, E. Glutaraldehyde release from heat-polymerized acrylic resins after disinfection and chemical and mechanical polishing. Braz. Dent. J. 2011, 22, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Nowakowska, D.; Więckiewicz, M.; Nowakowska-Toporowska, A. The effect of chlorhexidine disinfectant gels with anti-discoloration systems on color and mechanical properties of PMMA resin for dental application. Polymers 2021, 13, 1800. [Google Scholar] [CrossRef]
- Walczak, K.; Thiele, J.; Geisler, D.; Boening, K.; Wieckiewicz, M. Effect of chemical disinfection on chitosan coated PMMA and PETG surfaces -an in vitro study. Polymers 2018, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Pachava, K.R.; Nadendla, L.K.; Alluri, L.S.C.; Tahseen, H.; Sajja, N.P. Invitro antifungal evaluation of denture soft liner incorporated with tea tree oil: A new therapeutic approach towards denture stomatitis. J. Clin. Diagn. Res. 2015, 9, 62–64. [Google Scholar] [CrossRef]
- Bueno, M.G.; Sousa, E.J.B.; Hotta, J.; Porto, V.C.; Urban, V.M.; Neppelenbroek, K.H. Surface properties of temporary soft liners modified by minimum inhibitory concetrations of antifungals. Braz. Dent. J. 2017, 28, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.M.; Kumar, V.A.; Natarajan, P.; Sreenivasan, G. Antifungal efficacy and the mechanical properties of soft liners against Candida albicans after the incorpotion of garlic and neem: An in vitro study. J. Int. Soc. Prevent. Communit. Dent. 2018, 8, 212–217. [Google Scholar] [CrossRef]
- Albrecht, N.; Da Silva Fidalgo, T.K.; De Alencar, M.J.S.; Maia, L.C.; Urban, V.M.; Neppelenbroek, K.H.; Reis, K.R. Peel bond strength and antifungal activity of two soft denture lining materials incorporated with 1% chlorhexidine diacetate. Dent. Mat. J. 2018, 37, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madan, N.; Datta, K. Evaluation of tensile bond strength of heat cure and autopolymerizing silicone-based resilient denture liners before and after thermocycling. Indian J. Dent. Res. 2012, 23, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Salloum, A.M. Effect of aging on bond strength of two soft lining materials to a denture polymer. J. Indian Prosthodont. Soc. 2014, 14, 155–160. [Google Scholar] [CrossRef]
- Mutluay, M.M.; Tezvergil-Mutluay, A. The influence of cyclic stress on surface properties of sort liners. Odontology 2017, 105, 214–221. [Google Scholar] [CrossRef]
- Gawlak, D.; Mańka-Malara, K.; Mierzwińska-Nastalska, E.; Waśniewski, B.; Ryszkowska, J. Comparison of hardness, energy absorption and water absorbability of polymeric materials used in the manufacture of mouthguards. Dent. Med. Probl. 2015, 52, 78–85. [Google Scholar]
- Gawlak, D.; Mańka-Malara, K.; Kamiński, T. Assessment of the usage of custom mouthguards prepared using pressure injection—preliminary examination. Dent. Med. Probl. 2014, 51, 218–224. [Google Scholar]
- Mańka-Malara, K.; Gawlak, D. The comparison of mouthguards used in combat sports. Dent. Med. Probl. 2013, 50, 205–209. [Google Scholar]
Mollosil Plus | 1 Toothbrush 15 min (n = 4) | 2 Toothbrush + Soap 15 min (n = 4) | 3 Toothbrush + Blendamed 15 min (n = 4) | 4 Toothbrush + Protefix Paste 15 min (n = 4) | 5 Protefix Tablets 15 min (n = 4) | 6 Aftermat 15 min (n = 4) | p |
---|---|---|---|---|---|---|---|
Small separating pieces, n (%) | 2 (50.0) | 3 (75.0) | 4 (100.0) | 3 (75.0) | 2 (50.0) | 4 (100.0) | 0.377 |
Big separating pieces, n (%) | 1 (25.0) | 0 (0.0) | 2 (50.0) | 4 (100.0) | 2 (50.0) | 3 (75.0) | 0.075 |
Precipitate, n (%) | 0 (0.0) | 0 (0.0) | 4 (100.0) | 2 (50.0) | 4 (100.0) | 4 (100.0) | 0.001 |
Grooves, n (%) | 2 (50.0) | 3 (75.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.020 |
Holes, n (%) | 1 (25.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (25.0) | 0.498 |
Sum, mean ± SD | 1.5 ± 1.0 | 1.5 ± 0.6 | 2.5 ± 0.6 | 2.3 ± 0.5 | 2.0 ± 0.0 | 3.0 ± 0.8 | 0.031 p 1,3 = 0.045 p1,6 = 0.005 p2,3 = 0.045 p2,6 = 0.005 p5,6 = 0.045 |
Decontamination Method. | 1 min (mean ± SD) | 5 min (mean ± SD) | 10 min (mean ± SD) | 15 min (mean ± SD) | p |
---|---|---|---|---|---|
Toothbrush | 0.25 ± 0.5 | 1.25 ± 0.5 | 1.0 ± 0.8 | 1.5 ± 1.0 | 0.147 |
Toothbrush + soap | 1.75 ± 0.5 | 1.25 ± 1.3 | 0.75 ± 1.0 | 1.5 ± 0.6 | 0.449 |
Toothbrush + Blendamed | 2.25 ± 0.5 | 2.25 ± 0.5 | 3.0 ± 0.8 | 2.5 ± 0.6 | 0.310 |
Toothbrush + Protefix paste | 1.5 ± 0.6 | 2.25 ± 0.5 | 2.25 ± 1.0 | 2.25 ± 0.5 | 0.324 |
Protefix Tablets | 1.25 ± 0.5 | 2.5 ± 0.6 | 2.0 ± 0.0 | 2.0 ± 0.0 | 0.005 p1,2 = 0.001 p1,3 = 0.017 p1,4 = 0.017 |
Aftermat | 2.25 ± 0.5 | 3.0 ± 0.8 | 2.5 ± 0.6 | 3.0 ± 0.8 | 0.360 |
Plastitanium | 1 Toothbrush 15 min (n = 4) | 2 Toothbrush + Soap 15 min (n = 4) | 3 Toothbrush + Blendamed 15 min (n = 4) | 4 Toothbrush + Protefix Paste 15 min (n = 4) | 5 Protefix Tablets 15 min (n = 4) | 6 Aftermat 15 min (n = 4) | p |
---|---|---|---|---|---|---|---|
Small separating pieces, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4(100.0) | 4 (100.0) | - |
Big separating pieces, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 0.390 |
Precipitate, n (%) | 2 (50.0) | 0 (0.0) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 0.008 |
Grooves, n (%) | 4 (100.0) | 4 (100.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 2 (50.0) | 0.156 |
Holes, n (%) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 3 (75.0) | 4 (100.0) | 1 (25.0) | 0.066 |
Sum, mean ± SD | 4.5 ± 0.6 | 3.8 ± 0.5 | 5.0 ± 0.0 | 4.5 ± 1.0 | 4.8 ± 0.5 | 3.5 ± 0.6 | 0.016 p1,6 = 0.030 p2,3 = 0.009 p2,5 = 0.030 p3,6 = 0.002 p4,6 = 0.030 p5,6 = 0.009 |
Decontamination Method | 1 min (mean ± SD) | 5 min (mean ± SD) | 10 min (mean ± SD) | 15 min (mean ± SD) | p |
---|---|---|---|---|---|
Toothbrush | 4.0 ± 0.8 | 3.5 ± 0.6 | 4.3 ± 0.5 | 4.5 ± 0.6 | 0.193 |
Toothbrush + soap | 2.8 ± 0.5 | 3.5 ± 0.6 | 3.8 ± 0.5 | 3.8 ± 0.5 | 0.057 |
Toothbrush + Blendamed | 4.5 ± 0.6 | 4.8 ± 0.5 | 4.8 ± 0.5 | 5.0 ± 0.0 | 0.517 |
Toothbrush + Protefix paste | 2.8 ± 1.0 | 3.5 ± 0.6 | 4.3 ± 0.5 | 4.5 ± 1.0 | 0.035 p1,3 = 0.020 p1,4 = 0.009 |
Protefix Tablets | 3.8 ± 1.0 | 4.8 ± 0.5 | 4.5 ± 1.0 | 4.8 ± 0.5 | 0.269 |
Aftermat | 2.5 ± 0.6 | 3.0 ± 0.8 | 3.3 ± 0.5 | 3.5 ± 0.6 | 0.193 |
Decontamination Method | Plastitanium (mean ± SD) | Molosil (mean ± SD) | p |
---|---|---|---|
Toothbrush | 4.5 ± 0.6 | 1.5 ± 1.0 | 0.002 |
Toothbrush + soap | 3.8 ± 0.5 | 1.5 ± 0.6 | 0.001 |
Toothbrush + Blendamed | 5.0 ± 0.0 | 2.5 ± 0.6 | 0.003 |
Toothbrush + Protefix Paste | 4.5 ± 1.0 | 2.3 ± 0.5 | 0.007 |
Protefix Tablets | 4.8 ± 0.5 | 2.0 ± 0.0 | 0.002 |
Aftermat | 3.5 ± 0.6 | 3.0 ± 0.8 | 0.356 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mańka-Malara, K.; Trzaskowski, M.; Gawlak, D. The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers 2021, 13, 4340. https://doi.org/10.3390/polym13244340
Mańka-Malara K, Trzaskowski M, Gawlak D. The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers. 2021; 13(24):4340. https://doi.org/10.3390/polym13244340
Chicago/Turabian StyleMańka-Malara, Katarzyna, Maciej Trzaskowski, and Dominika Gawlak. 2021. "The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics" Polymers 13, no. 24: 4340. https://doi.org/10.3390/polym13244340
APA StyleMańka-Malara, K., Trzaskowski, M., & Gawlak, D. (2021). The Influence of Decontamination Procedures on the Surface of Two Polymeric Liners Used in Prosthodontics. Polymers, 13(24), 4340. https://doi.org/10.3390/polym13244340