Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 2-Methyl-2-oxazoline
2.3. Synthesis of Poly(2-methyl-2-oxazoline)
2.4. Sample Preparation for Determining the Degree of Crystallinity of the Polymer
2.5. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nowak, A.P.; Gazda, M.; Lapinski, M.; Zarach, Z.; Trzcinski, K.; Szkoda, M.; Mania, S.; Li, J.; Tylingo, R. Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries. Materials 2021, 5, 1156. [Google Scholar] [CrossRef]
- Sirotin, I.S.; Sarychev, I.A.; Vorobyeva, V.V.; Kuzmich, A.A.; Bornosuz, N.V.; Onuchin, D.V.; Gorbunova, I.Y.; Kireev, V.V. Synthesis of Phosphazene-Containing, Bisphenol A-Based Benzoxazines and Properties of Corresponding Polybenzoxazines. Polymers 2020, 6, 1225. [Google Scholar] [CrossRef] [PubMed]
- Bornosuz, N.V.; Gorbunova, I.Y.; Kireev, V.V.; Bilichenko, Y.V.; Chursova, Y.S.; Svistunov, L.V.; Onuchin, D.V.; Shutov, V.V.; Petrakova, V.V.; Kolenchenko, A.A.; et al. Synthesis and Application of Arylaminophosphazene as a Flame Retardant and Catalyst for the Polymerization of Benzoxazines. Polymers 2021, 2, 263. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Buzin, M.I.; Aksenov, S.M.; Tupikov, A.S.; Kireev, V.V. Thermal polycondensation of hexakis(p-acetylphenoxy)-cyclotriphosphazene. Mendeleev. Commun. 2019, 1, 99. [Google Scholar] [CrossRef]
- Chistyakov, E.M.; Tupikov, A.S.; Buzin, M.I.; Borisov, R.S.; Kireev, V.V. Preparation of films based on β-diketophosphazene and different amines and study their properties. Mater. Chem. Phys. 2019, 223, 353. [Google Scholar] [CrossRef]
- Bredov, N.S.; Bykovskaya, A.A.; Van Tuan, N.; Kireev, V.V.; Tupikov, A.S.; Sokolskaya, I.B.; Posokhova, V.F.; Chuev, V.P. Oligomeric Silsesquioxane–Siloxane Modifiers for Polymer Dental Compounds. Polym. Sci. Ser. B 2020, 3, 182. [Google Scholar] [CrossRef]
- Shi, W.; Hu, Y.; Li, Q.; Lan, T.; Zhang, X.; Cao, J. Recovery of Pd(II) in chloride solutions by solvent extraction with new vinyl sulfide ploymer extractants. Hydrometallurgy 2021, 204, 105716. [Google Scholar] [CrossRef]
- Akande, I.G.; Ajayi, S.A.; Fajobi, M.A.; Oluwole, O.O.; Fayomi, O.S.I. Advancement in the Production and Applications of Conductive Polymers (CPs). Key Eng. Mater. 2021, 886, 12. [Google Scholar] [CrossRef]
- Ye, J.-J.; Han, L.-B. Ready approach to poly(vinyldiphenylphosphine): A novel soluble polymer for conveniently conducting Wittig reactions. Tetrahedron. Lett. 2021, 6516, 152796. [Google Scholar] [CrossRef]
- Ivanova, N.M.; Filippova, E.O.; Aleinik, A.N.; Pichugin, V.F. Effect of Low-Temperature Plasma Treatment and γ Irradiation on the Surface Properties of Thin Films Based on Polylactic Acid. Inorg. Mater. Appl. Res. 2021, 3, 664. [Google Scholar] [CrossRef]
- Mezhuev, Y.O.; Shtilman, M.I.; Artyukhov, A.A. The Application of Polyaniline and Polypyrrole in Medical and Biological Fields. Part 2. Tissue Engineering, Muscle Simulation, and Systems with Controlled Release of Biologically Active Substances. Polym. Sci. Ser. D 2021, 3, 427. [Google Scholar] [CrossRef]
- Blöhbaum, J.; Paulus, I.; Pöppler, A.C.; Tessmar, J.; Grol, J.J. Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol–ene cross-linked poly(2-oxazoline) hydrogels. Mater. Chem. B 2019, 7, 1782. [Google Scholar] [CrossRef]
- Wang, C.H.; Hwang, Y.S.; Chiang, P.R.; Shen, C.R.; Hong, W.H.; Hsiue, G.H. Extended Release of Bevacizumab by Thermosensitive Biodegradable and Biocompatible Hydrogel. Biomacromolecules 2012, 1, 40. [Google Scholar] [CrossRef] [PubMed]
- Lorson, T.; Jaksch, S.; Lübtow, M.M.; Jüngst, T.; Groll, J.; Lühmann, T.; Luxenhofer, R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017, 7, 2161. [Google Scholar] [CrossRef]
- Pan, X.; Liu, Y.; Li, Z.; Cui, S.; Gebru, H.; Xu, J.; Xu, S.; Liu, J.; Guo, K. Amphiphilic Polyoxazoline-block-Polypeptoid Copolymers by Sequential One-Pot Ring-Opening Polymerizations. Macromol. Chem. Phys. 2017, 6, 1600483. [Google Scholar] [CrossRef]
- Simon, L.; Vincent, M.; Le Saux, S.; Lapinte, V.; Marcotte, N.; Morille, M.; Dorandeu, C.; Devoisselle, J.M.; Bégu, S. Polyoxazolines based mixed micelles as PEG free formulations for an effective quercetin antioxidant topical delivery. Int. J. Pharm. 2019, 570, 118516. [Google Scholar] [CrossRef]
- Deodhar, S.; Dash, A.K.; North, E.J.; Hulce, M. Development and In Vitro Evaluation of Long Circulating Liposomes for Targeted Delivery of Gemcitabine and Irinotecan in Pancreatic Ductal Adenocarcinoma. AAPS Pharm. Sci. Tech. 2020, 6, 231. [Google Scholar] [CrossRef] [PubMed]
- Korchia, L.; Lapinte, V.; Travelet, C.; Borsali, R.; Robin, J.; Bouilhac, C. UV-responsive amphiphilic graft copolymers based on coumarin and polyoxazoline. Soft Matter. 2017, 13, 4507. [Google Scholar] [CrossRef]
- Viktorova, A.S.; Elizarova, E.S.; Romanova, R.S.; Timergalieva, V.R.; Khutoryanskiy, V.V.; Moustafine, R.I. Interpolymer complexes based on Carbopol® and poly(2-ethyl2-oxazoline) as carriers for buccal delivery of metformin. Drug Dev. Regist. 2021, 1, 48. [Google Scholar] [CrossRef]
- Morgese, G.; Shaghasemi, B.S.; Causin, V.; Zenobi-Wong, M.; Ramakrishna, S.N.; Reimhult, E.; Benetti, E.M. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes. Angew. Chem. Int. Ed. 2017, 16, 4507. [Google Scholar] [CrossRef]
- Kurzhals, S.; Gal, N.; Zirbs, R.; Reimhult, E. Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles. Nanoscale 2017, 9, 2793. [Google Scholar] [CrossRef] [PubMed]
- Morgese, G.; Gombert, Y.; Ramakrishna, S.N.; Benetti, E.M. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS Appl. Mater. Interfaces 2018, 10, 41839. [Google Scholar] [CrossRef] [PubMed]
- Morgese, G.; Benetti, E.M. Polyoxazoline biointerfaces by surface grafting. Eur. Polym. J. 2017, 88, 470. [Google Scholar] [CrossRef]
- Haladjova, E.; Smolíček, M.; Ugrinova, I.; Momekova, D.; Shestakova, P.; Kroneková, Z.; Kronek, J.; Rangelov, S. DNA delivery systems based on copolymers of poly (2-methyl-2-oxazoline) and polyethyleneimine: Effect of polyoxazoline moieties on the endo-lysosomal escape. J. Appl. Polym. Sci. 2020, 137, 49400. [Google Scholar] [CrossRef]
- Amirova, A.; Rodchenko, S.; Kurlykin, M.; Tenkovtsev, A.; Krasnou, I.; Krumme, A.; Filippov, A. Intermolecular interaction of thermoresponsive poly-2-isopropyl-2-oxazoline in solutions and interpolymer complex with fiber-forming polyethylene oxide. J. Appl. Polym. Sci. 2020, 138, 49708. [Google Scholar] [CrossRef]
- Oleszko, N.; Utrata-Wesołek, A.; Wałach, W.; Libera, M.; Hercog, A.; Szeluga, U.; Domański, M.; Trzebicka, B.; Dworak, A. Crystallization of Poly(2-isopropyl-2-oxazoline) in Organic Solutions. Macromolecules 2015, 48, 1852. [Google Scholar] [CrossRef]
- Legros, C.; De Pauw-Gillet, M.-C.; Tam, K.C.; Taton, D.; Lecommandoux, S. Crystallisation-driven self-assembly of poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) above the LCST. Soft Matter. 2015, 11, 3354. [Google Scholar] [CrossRef]
- Wałach, W.; Klama--baryła, A.; Sitkowska, A.; Kowalczuk, A.; Oleszko--torbus, N. Alternative to poly(2--isopropyl--2--oxazoline) with a reduced ability to crystallize and physiological lcst. Int. J. Mol. Sci. 2021, 22, 2221. [Google Scholar] [CrossRef]
- Bouktab, S.; Saidat, B.; Belhocine, M.; Ammari, A.; Dergal, F. Structural and dielectric properties of poly(2-ethyl-2-oxazoline)/montmorillonite nanocomposite. J. Mater. Sci. Mater. Electron. 2021, 32, 13871. [Google Scholar] [CrossRef]
- Glassner, M.; Vergaelen, M.; Hoogenboom, R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 1, 32. [Google Scholar] [CrossRef]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum 1987, 321, 6624. [Google Scholar] [CrossRef]
- Guinier, A. X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies; W.H. Freeman and Company: London, UK, 1963; Volume 378. [Google Scholar]
- Manalastas-Cantos, K.; Konarev, P.V.; Hajizadeh, N.R.; Kikhney, A.G.; Petoukhov, M.V.; Molodenskiy, D.S.; Panjkovich, A.; Mertens, H.D.T.; Gruzinov, A.; Borges, C.; et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021, 54, 343. [Google Scholar] [CrossRef] [PubMed]
- Louer, D.; Boultif, A. Some further considerations in powder diffraction pattern indexing with the dichotomy method. Powder Diffr. 2014, 29, 7. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993, 192, 55. [Google Scholar] [CrossRef]
- Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Cryst. 1987, 20, 79. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, A.; Duroy, H.; Fourquet, I.L. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bullet. 1988, 23, 447. [Google Scholar] [CrossRef]
- Alexander, L.A. X-Ray Diffraction Methods in Polymer Science. Malabar. Fla. 1985, 582, 1143. [Google Scholar] [CrossRef]
- Brown, P.J.; Fox, A.G.; Maslen, E.N.; O’Keefe, M.A.; Willis, B.T.M. International Tables for Crystallography. Kluwer. Acad. 2004, 6, 554–595. [Google Scholar] [CrossRef]
Peak Position, Å−1 | Interplanar Bragg Spacing, Å | Coherence Length (Size of the Crystalline Grain) Found by the Debye–Scherer Formula, Å at K = 1.11 |
---|---|---|
0.0743 ± 0.0003 | 85 ± 1 | - |
0.0885 ± 0.0003 | 71 ± 1 | - |
0.0981 ± 0.0005 | 64 ± 2 | - |
1.0424 ± 0.0003 | 6.03 ± 0.02 | 430 ± 30 |
1.0574 ± 0.0003 | 5.94 ± 0.02 | 480 ± 40 |
1.3502 ± 0.0003 | 4.64 ± 0.02 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chistyakov, E.M.; Filatov, S.N.; Sulyanova, E.A.; Volkov, V.V. Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers 2021, 13, 4356. https://doi.org/10.3390/polym13244356
Chistyakov EM, Filatov SN, Sulyanova EA, Volkov VV. Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers. 2021; 13(24):4356. https://doi.org/10.3390/polym13244356
Chicago/Turabian StyleChistyakov, Evgeniy M., Sergey N. Filatov, Elena A. Sulyanova, and Vladimir V. Volkov. 2021. "Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline)" Polymers 13, no. 24: 4356. https://doi.org/10.3390/polym13244356
APA StyleChistyakov, E. M., Filatov, S. N., Sulyanova, E. A., & Volkov, V. V. (2021). Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers, 13(24), 4356. https://doi.org/10.3390/polym13244356