Study on the Complexation and Release Mechanism of Methylphenidate Hydrochloride Ion Exchange Resin Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Drug–Resin Complex
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Differential Scanning Calorimetry (DSC)
2.2.4. Powder X−ray Diffraction (XRD)
2.2.5. Fourier Transform Infrared (FT−IR) Spectrometry
2.2.6. Molecular Dynamics Simulations
2.2.7. Study of Factors Affecting the Compounding Process
2.2.8. Drug Release Studies
3. Results and Discussions
3.1. Characteristics of Drug−Resin Complex
3.2. Optical Properties of Drug−Resin Complex
3.3. Molecular Dynamics Simulations
3.3.1. Conformational Stability and Intermolecular Interaction of the Ion Exchange Resin
3.3.2. Interaction between Drugs and Ion Exchange Resins
3.3.3. Change of Interaction between Sodium Ions and Ion Exchange Resins
3.4. Factors Affecting the Compounding Process
3.4.1. Exchange Capacity of Ion Exchange Resin
3.4.2. Particle Size of Ion Exchange Resin
3.4.3. Time of Mixing
3.4.4. Temperature of Mixing Complexation
3.4.5. Type and Strength of Counter Ions in System
3.5. Mechanism of Release
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeng, H. Studies on Drug Delivery System with Drug−Resinate Complex and Its Pharmacokinetics. Ph.D. Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2008. [Google Scholar]
- Education and Training Center, M.o.C.I. Ion Exchange; Chemical Industry Press Co., Ltd.: Beijing, China, 1997. [Google Scholar]
- DuPont. AMBERLITE IRP69 Pharmaceutical Grade Cation Exchange Resin. April 2021. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D00961-en.pdf (accessed on 29 November 2021).
- Guo, X.; Chang, R.-K.; Hussain, M.A. Ion−exchange resins as drug delivery carriers. J. Pharm. Sci. 2009, 98, 3886–3902. [Google Scholar] [CrossRef]
- Anand, V.; Kandarapu, R.; Garg, S. Ion−exchange resins: Carrying drug delivery forward. Drug Discov. Today 2001, 6, 905–914. [Google Scholar] [CrossRef]
- Chaudhry, N.C.; Saunders, L. Sustained release of drugs from ion exchange resins. J. Pharm. Pharmacol. 1956, 8, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Keating, J.W. Pharmaceutical Preparations Comprising Cation Exchange Resin Adsorption Compounds and Treatment Therewith. U.S. Patent 2,990,332,196,1, 27 June 1961. [Google Scholar]
- Hays, E.E. Pharmaceutical Composition Containing a Resin−Narcotic Compound and a Resinantihistamine Compound. U.S. Patent 3,035,979,196,2, 22 May 1962. [Google Scholar]
- Keating, J.W. Pharmaceutical Preparations Comprising Phosphorus Containing Cation Exchange Resins Having a Basic Drug Adsorbed Thereon; and Treatment Therewith. U.S. Patent 3,143,465,196,4, 4 August 1964. [Google Scholar]
- FDA. Inactive Ingredient Search for Approved Drug Products. Available online: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. (accessed on 28 August 2021).
- FDA. Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations. Available online: https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm. (accessed on 28 August 2021).
- Yy, A.; Hk, A.; Mh, A.; Mv, B.; No, C.; Dm, A.; Yk, A.; Km, A.; Cr, B.; Tt, A. The mechanism of solifenacin release from a pH−responsive ion−complex oral suspension in the fasted upper gastrointestinal lumen. Eur. J. Pharm. Sci. 2020, 142, 105107. [Google Scholar] [CrossRef]
- Aka, B.; Ks, C.; Hk, B. Scintigraphic evaluation of the in vivo performance of dry−coated delayed−release tablets in humans. Eur. J. Pharm. Biopharm. 2020, 152, 116–122. [Google Scholar] [CrossRef]
- Daihom, B.A.; Bendas, E.R.; Mohamed, M.I.; Badawi, A.A. Domperidone resinate complex as new formulation for gastroretentive drug delivery. J. Drug Deliv. Sci. Technol. 2020, 58, 101868. [Google Scholar] [CrossRef]
- Daihom, B.A.; Bendas, E.R.; Mohamed, M.I.; Badawi, A.A. Development and in vitro evaluation of domperidone/Dowex resinate embedded gastro−floatable emulgel and effervescent alginate beads. J. Drug Deliv. Sci. Technol. 2020, 59, 101941. [Google Scholar] [CrossRef]
- Agostinho, D.; Jesus, A.R.; Silva, A.; Esperana, J.; Reis, P.M. Improvement of new dianionic ionic liquids vs monoanionic in solubility of poorly water−soluble drugs. J. Pharm. Sci. 2021, 110, 2489–2500. [Google Scholar] [CrossRef] [PubMed]
- Sutthapitaksakul, L.; Dass, C.R.; Sriamornsak, P. Donepezil—An updated review of challenges in dosage form design. J. Drug Deliv. Sci. Technol. 2021, 63, 102549. [Google Scholar] [CrossRef]
- Thiam, T.D.C.; Jianming, O.J.; Rajeev, G.; Sia, H.P.W. Hot melt extrusion of ion−exchange resin for taste masking. Int. J. Pharm. 2018, 547, 385–394. [Google Scholar] [CrossRef]
- Shang, R.; Liu, C.; Quan, P.; Zhao, H.; Fang, L. Effect of drug−ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int. J. Pharm. 2018, 545, 163–169. [Google Scholar] [CrossRef]
- United States Pharmacopoeia; The United States Pharmacopeial Convention: Rockville, MA, USA, 2021.
- Sabbagh, F.; Kiarostami, K.; Khatir, N.M.; Rezania, S.; Muhamad, I.I. Green Synthesis of Mg0.99Zn0.01O Nanoparticles for the Fabrication of κ-Carrageenan/NaCMC Hydrogel in order to Deliver Catechin. Polymers 2020, 12, 861. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well–behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- FDA. Dissolution Methods. Available online: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm (accessed on 28 August 2021).
- Sun, W.; Li, R.; Li, S. Dexmethylphenidate Hydrochloride Crystal Form and Preparation Method Thereof. CN104744342A, 1 July 2015. Available online: https://patents.google.com/patent/CN104744342A/en (accessed on 29 November 2021).
- Han, X.; Zhang, S.; Chai, Z.; Dong, Y.; He, W.; Yin, L.; Yang, L.; Qin, C. In vitro and in vivo evaluation of the taste−masking efficiency of Amberlite IRP88 as drug carries in chewable tablets. J. Drug Deliv. Sci. Technol. 2018, 49, 547–555. [Google Scholar] [CrossRef]
- Mokhtar, A.R.; Mohamed, M.M.; Mahmoud, A.G. Ion−exchange complex of famotidine: Sustained release and taste masking approach of stable liquid dosage form. Drug Discov. Ther. 2014, 8, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Jenquin, R.M.; McGinity, W.J. Characterization of acrylic resin matrix films and mechanisms of drug−polymer interactions. Int. J. Pharm. 1994, 101, 23–34. [Google Scholar] [CrossRef]
- Malladi, M.; Jukanti, R.; Nair, R.; Wagh, S.; Padakanti, H.; Mateti, A. Design and evaluation of taste masked dextromethorphan hydrobromide oral disintegrating tablets. Acta Pharm. 2010, 60, 267–280. [Google Scholar] [CrossRef] [Green Version]
- ECPH. The Encyclopedia of China; Encyclopedia of China Publishing House: Beijing, China, 2009. [Google Scholar]
- Farzaneh, S.; Idayu, M.I.; Zahra, N.; Peyman, M.; Mahmoudi, K.N. Investigation of Acyclovir−Loaded, Acrylamide−Based Hydrogels for Potential Use as Vaginal Ring. Mater. Today Commun. 2018, 16, 274–280. [Google Scholar] [CrossRef]
- Jeong, S.H.; Berhane, N.H.; Haghighi, K.; Park, K. Drug Release Properties of Polymer Coated Ion−Exchange Resin Complexes: Experimental and Theoretical Evaluation. J. Pharm. Sci. 2007, 96, 618–632. [Google Scholar] [CrossRef]
- Di, J.; Gao, X.; Du, Y.; Zhang, H.; Zheng, A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2020, 16, 444–458. [Google Scholar] [CrossRef]
- Gut, F.; Schiek, W.; Haefeli, W.E.; Walter-Sack, I.; Burhenne, J. Cation exchange resins as pharmaceutical carriers for methylene blue: Binding and release. Eur. J. Pharm. Biopharm. 2008, 69, 280–291. [Google Scholar] [CrossRef]
No. | Factor | The Ratio of Drugs to Resins | Particle Size of Ion Exchange Resin (D90, μm) | Temperature (°C) | Type and Strength of Counter Ions in System |
---|---|---|---|---|---|
1 | The ratio of drug to resin | 1:10 | 117 | 25 | No Counter Ions |
2 | 2:10 | 117 | 25 | No Counter Ions | |
3 | 4:10 | 117 | 25 | No Counter Ions | |
4 | 6:10 | 117 | 25 | No Counter Ions | |
5 | 8:10 | 117 | 25 | No Counter Ions | |
6 | 10:10 | 117 | 25 | No Counter Ions | |
7 | 10:4 | 117 | 25 | No Counter Ions | |
8 | 10:2 | 117 | 25 | No Counter Ions | |
9 | Particle Size of Ion Exchange Resin | 4:10 | 128 | 25 | No Counter Ions |
10 | 4:10 | 117 | 25 | No Counter Ions | |
11 | 4:10 | 81 | 25 | No Counter Ions | |
12 | Temperature | 4:10 | 117 | 25 | No Counter Ions |
13 | 4:10 | 117 | 30 | No Counter Ions | |
14 | 4:10 | 117 | 40 | No Counter Ions | |
15 | 4:10 | 117 | 50 | No Counter Ions | |
16 | Type and Strength of Counter Ions in System | 4:10 | 117 | 25 | No Counter Ions |
17 | 4:10 | 117 | 25 | 1.25 M K+ | |
18 | 4:10 | 117 | 25 | 2.5 M K+ | |
19 | 4:10 | 117 | 25 | 1.25 M Na+ | |
20 | 4:10 | 117 | 25 | 2.5 M Na+ | |
21 | 4:10 | 117 | 25 | 1.25 M H+ | |
22 | 4:10 | 117 | 25 | 2.5 M H+ |
The Ratio of Drugs to Resins | C0 (mg/mL) | Ce (mg/mL) | V (mL) | M (g) | Xe (mg/g) |
---|---|---|---|---|---|
1:10 | 40.00 | 0.274 | 100 | 40.005 | 99.30 |
2:10 | 40.00 | 0.614 | 100 | 20.003 | 196.90 |
4:10 | 40.00 | 1.80 | 100 | 10.000 | 381.97 |
6:10 | 60.09 | 5.66 | 100 | 10.006 | 543.95 |
8:10 | 80.01 | 11.97 | 100 | 10.000 | 680.40 |
10:10 | 40.00 | 8.31 | 100 | 4.002 | 791.94 |
10:4 | 40.00 | 23.20 | 100 | 1.600 | 1050.19 |
10:2 | 40.00 | 30.54 | 100 | 0.801 | 1181.36 |
Medium | Particle Diffusion Controlled Model | Film Diffusion Controlled Model | ||
---|---|---|---|---|
Equation | r | Equation | r | |
0.4 M KH2PO4 | −ln(1 − F) = 0.5870 t0.65 − 0.2382 | 0.9967 | −ln(1 − F) = 0.1749 t + 0.5812 | 0.9996 |
Phosphate Buffer, pH4.5 | −ln(1 − F) = 0.2911 t0.65 − 0.1240 | 0.9993 | −ln(1 − F) = 0.0713 t + 0.4251 | 0.9924 |
Acetate Buffer, pH4.5 | −ln(1 − F) = 0.2662 t0.65 − 0.1891 | 0.9997 | −ln(1 − F) = 0.0653 t + 0.3120 | 0.9940 |
Hydrochloric Acid, pH1.0 | −ln(1 − F) = 0.2811 t0.65 + 0.3077 | 0.9933 | −ln(1 − F) = 0.0684 t + 0.8453 | 0.9794 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Wang, Z.; Zheng, A. Study on the Complexation and Release Mechanism of Methylphenidate Hydrochloride Ion Exchange Resin Complex. Polymers 2021, 13, 4394. https://doi.org/10.3390/polym13244394
Li C, Han X, Hong X, Li X, Zhang H, Wang Z, Zheng A. Study on the Complexation and Release Mechanism of Methylphenidate Hydrochloride Ion Exchange Resin Complex. Polymers. 2021; 13(24):4394. https://doi.org/10.3390/polym13244394
Chicago/Turabian StyleLi, Conghui, Xiaolu Han, Xiaoxuan Hong, Xianfu Li, Hui Zhang, Zengming Wang, and Aiping Zheng. 2021. "Study on the Complexation and Release Mechanism of Methylphenidate Hydrochloride Ion Exchange Resin Complex" Polymers 13, no. 24: 4394. https://doi.org/10.3390/polym13244394