Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PtNPs and Formulation of Nano-Ink
2.2. AJP Testing of Prepared Pt Nano-Ink
2.3. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, M.G.; Kramer, R. All-Printed Flexible and Stretchable Electronics. Adv. Mater. 2017, 29, 1604965. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.-S.; Rahman, M.K.; Phung, T.H.; Hoath, S.D.; Jeong, S.; Kim, J.S. Review of Digital Printing Technologies for Electronic Materials. Flex. Print. Electron. 2021, 6. [Google Scholar] [CrossRef]
- Angelin, A.; Bog, U.; Kumar, R.; Niemeyer, C.M.; Hirtz, M. Writing Behavior of Phospholipids in Polymer Pen Lithography (PPL) for Bioactive Micropatterns. Polymers 2019, 11, 891. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.W.; Colligon, J.S.; Smith, R.; Wilkinson, C.D.W.; Rahman, M. Dry Etching and Sputtering. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 2004, 362, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Maddipatla, D.; Narakathu, B.B.; Atashbar, M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. Biosensors 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Raut, N.C.; Al-Shamery, K. Inkjet Printing Metals on Flexible Materials for Plastic and Paper Electronics. J. Mater. Chem. C 2018, 6, 1618–1641. [Google Scholar] [CrossRef]
- Efimov, A.A.; Minkov, K.N.; Arsenov, P.V.; Protas, N.V.; Ivanov, V.V. Investigation of Sintering of Silver Lines on a Heated Plastic Substrate in the Dry Aerosol Jet Printing. J. Phys. Conf. Ser. 2018, 1124, 081041. [Google Scholar] [CrossRef]
- Tortorich, R.P.; Shamkhalichenar, H.; Choi, J.-W. Inkjet-Printed and Paper-Based Electrochemical Sensors. Appl. Sci. 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, A.A.; Varfolomeev, A.E.; Volkov, I.A.; Simonenko, N.P.; Arsenov, P.V.; Vlasov, I.S.; Ivanov, V.V.; Pislyakov, A.V.; Lagutin, A.S.; Jahatspanian, I.E.; et al. Reducing Humidity Response of Gas Sensors for Medical Applications: Use of Spark Discharge Synthesis of Metal Oxide Nanoparticles. Sensors 2018, 18, 2600. [Google Scholar] [CrossRef] [Green Version]
- Braga, D.; Erickson, N.C.; Renn, M.J.; Holmes, R.J.; Frisbie, C.D. High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices. Adv. Funct. Mater. 2012, 22, 1623–1631. [Google Scholar] [CrossRef]
- Hong, K.; Kim, S.H.; Mahajan, A.; Frisbie, C.D. Aerosol Jet Printed P- and n-Type Electrolyte-Gated Transistors with a Variety of Electrode Materials: Exploring Practical Routes to Printed Electronics. ACS Appl. Mater. Interfaces 2014, 6, 18704–18711. [Google Scholar] [CrossRef]
- Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science 1994, 265, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Ghosale, A.; Bajpai, P.K.; Kant, T.; Dewangan, K.; Shankar, R. Advances in Flexible Electronics and Electrochemical Sensors Using Conducting Nanomaterials: A Review. Microchem. J. 2020, 156, 104944. [Google Scholar] [CrossRef]
- Basak, I.; Nowicki, G.; Ruttens, B.; Desta, D.; Prooth, J.; Jose, M.; Nagels, S.; Boyen, H.-G.; D’Haen, J.; Buntinx, M.; et al. Inkjet Printing of PEDOT:PSS Based Conductive Patterns for 3D Forming Applications. Polymers 2020, 12, 2915. [Google Scholar] [CrossRef] [PubMed]
- Efimov, A.A.; Arsenov, P.V.; Borisov, V.I.; Buchnev, A.I.; Lizunova, A.A.; Kornyushin, D.V.; Tikhonov, S.S.; Musaev, A.G.; Urazov, M.N.; Shcherbakov, M.I.; et al. Synthesis of Nanoparticles by Spark Discharge as a Facile and Versatile Technique of Preparing Highly Conductive Pt Nano-Ink for Printed Electronics. Nanomaterials 2021, 11, 234. [Google Scholar] [CrossRef]
- Mahajan, A.; Frisbie, C.D.; Francis, L.F. Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines. ACS Appl. Mater. Interfaces 2013, 5, 4856–4864. [Google Scholar] [CrossRef] [PubMed]
- Arsenov, P.V.; Efimov, A.A.; Ivanov, V.V. Comparison of Thermal and Electrical Sintering of Aerosol Silver Nanoparticles in Process of Aerosol Jet Printing. Key Eng. Mater. 2020, 834, 10–15. [Google Scholar] [CrossRef]
- Chen, T.; Yan, L.; Liu, R.; Zhong, W.; Chen, G. Preparation of High Performance Poly (3,4-Ethylenedioxythiophene) Nanoparticles Ink and Its Inkjet Printability. Lect. Notes Electr. Eng. 2019, 543, 840–849. [Google Scholar] [CrossRef]
- Bag, S.; Deneault, J.R.; Durstock, M.F. Aerosol-Jet-Assisted Thin-Film Growth of CH3NH3PbI3 Perovskites—A Means to Achieve High Quality, Defect-Free Films for Efficient Solar Cells. Adv. Energy Mater. 2017, 7, 1701151. [Google Scholar] [CrossRef]
- Arsenov, P.V.; Efimov, A.A.; Ivanov, V.V. Effect of Methods of Changing in Focusing Ratio on Line Geometry in Aerosol Jet Printing. Key Eng. Mater. 2018, 779, 159–164. [Google Scholar] [CrossRef]
- Gupta, A.A.; Soer, M.C.M.; Taherzadeh-Sani, M.; Cloutier, S.G.; Izquierdo, R. Aerosol-Jet Printed Transmission Lines for Microwave Packaging Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 2482–2489. [Google Scholar] [CrossRef]
- Wilkinson, N.J.; Smith, M.A.A.; Kay, R.W.; Harris, R.A. A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105, 4599–4619. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Liu, W.; Zhao, Z.; Yin, E.; Li, C.; Zhou, L.; Zhang, Q.; Feng, Y.; Lin, S. Cost-Effective Silver Nano-Ink for Inkjet Printing in Application of Flexible Electronic Devices. Chem. Phys. Lett. 2020, 757, 137904. [Google Scholar] [CrossRef]
- Schuetz, K.; Hoerber, J.; Franke, J. Selective Light Sintering of Aerosol-Jet Printed Silver Nanoparticle Inks on Polymer Substrates. AIP Conf. Proc. 2014, 1593, 732–735. [Google Scholar] [CrossRef] [Green Version]
- Scremin, J.; dos Santos, I.V.J.; Hughes, J.P.; Ferrari, A.G.-M.; Valderrama, E.; Zheng, W.; Zhong, X.; Zhao, X.; Sartori, E.J.R.; Crapnell, R.D.; et al. Platinum Nanoparticle Decorated Vertically Aligned Graphene Screen-Printed Electrodes: Electrochemical Characterisation and Exploration towards the Hydrogen Evolution Reaction. Nanoscale 2020, 12, 18214–18224. [Google Scholar] [CrossRef]
- Skotadis, E.; Mousadakos, D.; Katsabrokou, K.; Stathopoulos, S.; Tsoukalas, D. Flexible Polyimide Chemical Sensors Using Platinum Nanoparticles. Sens. Actuators B Chem. 2013, 189, 106–112. [Google Scholar] [CrossRef]
- Schubert, M.; Rebohle, L.; Wang, Y.; Fritsch, M.; Bock, K.; Vinnichenko, M.; Schumann, T. Evaluation of Nanoparticle Inks on Flexible and Stretchable Substrates for Biocompatible Application. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; pp. 1–6. [Google Scholar]
- Volkov, I.A.; Simonenko, N.P.; Efimov, A.A.; Simonenko, T.L.; Vlasov, I.S.; Borisov, V.I.; Arsenov, P.V.; Lebedinskii, Y.Y.; Markeev, A.M.; Lizunova, A.A.; et al. Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. Appl. Sci. 2021, 11, 526. [Google Scholar] [CrossRef]
- Arsenov, P.V.; Vlasov, I.S.; Efimov, A.A.; Minkov, K.N.; Ivanov, V.V. Aerosol Jet Printing of Platinum Microheaters for the Application in Gas Sensors. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 473, p. 012042. [Google Scholar] [CrossRef]
- Huang, H.; Wei, Y.; Yang, Y.; Yan, M.; He, H.; Jiang, Q.; Yang, X.; Zhu, J. Controllable Synthesis of Grain Boundary-Enriched Pt Nanoworms Decorated on Graphitic Carbon Nanosheets for Ultrahigh Methanol Oxidation Catalytic Activity. J. Energy Chem. 2021, 57, 601–609. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef] [Green Version]
- Efimov, A.A.; Arsenov, P.V.; Protas, N.V.; Minkov, K.N.; Urazov, M.N.; Ivanov, V.V. Dry Aerosol Jet Printing of Conductive Silver Lines on a Heated Silicon Substrate. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 307, p. 012082. [Google Scholar] [CrossRef]
- Mylnikov, D.; Efimov, A.; Ivanov, V. Measuring and Optimization of Energy Transfer to the Interelectrode Gaps during the Synthesis of Nanoparticles in a Spark Discharge. Aerosol Sci. Technol. 2019, 53, 1393–1403. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M. Poly(Vinylpyrrolidone)—A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym.-Plast. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Němec, T.; Šonský, J.; Gruber, J.; de Prado, E.; Kupčík, J.; Klementová, M. Platinum and Platinum Oxide Nanoparticles Generated by Unipolar Spark Discharge. J. Aerosol Sci. 2020, 141, 105502. [Google Scholar] [CrossRef]
- Lall, P.; Goyal, K.; Kothari, N.; Leever, B.; Miller, S. Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry. In Proceedings of the ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Anaheim, CA, USA, 7–9 October 2019. [Google Scholar]
- Efimov, A.; Arsenov, P.; Kornyushin, D.; Lizunova, A.; Volkov, I.; Ivanov, V. Aerosol Jet Printing of Silver Lines with A High Aspect Ratio on A Heated Silicon Substrate. Materials 2020, 13, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahng, S.-J.; Cerwyn, C.; Dincau, B.M.; Kim, J.-H.; Novosselov, I.V.; Anantram, M.P.; Chung, J.-H. Nanoink Bridge-Induced Capillary Pen Printing for Chemical Sensors. Nanotechnology 2018, 29, 335304. [Google Scholar] [CrossRef]
- Zea, M.; Moya, A.; Fritsch, M.; Ramon, E.; Villa, R.; Gabriel, G. Enhanced Performance Stability of Iridium Oxide-Based PH Sensors Fabricated on Rough Inkjet-Printed Platinum. ACS Appl. Mater. Interfaces 2019, 11, 15160–15169. [Google Scholar] [CrossRef] [PubMed]
- Véchembre, J.B.; Fox, G.R. Sintering of Screen-Printed Platinum Thick Films for Electrode Applications. J. Mater. Res. 2001, 16, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, A.; Sokolov, A.; Legin, A.; Samotaev, N.; Oblov, K.; Kim, V.; Tkachev, S.; Gubin, S.; Potapov, G.; Kokhtina, Y.; et al. Additive Technologies for Ceramic MEMS Sensors. Procedia Eng. 2015, 120, 1087–1090. [Google Scholar] [CrossRef] [Green Version]
Dn, μm | Qa, sccm | Qsh, sccm | Ts, °C | Vs, mm/min | Np |
---|---|---|---|---|---|
100–300 | 10–40 | 15–50 | 25–150 | 50–150 | 5–10 |
Dn, μm | Qa, sccm | Qsh, sccm | Ts, °C | Vs, mm/min | Np |
---|---|---|---|---|---|
150 | 10 | 20 | 100 | 100 | 10 |
Reference | Printing Method | Particle Size, nm | Solid Content, wt% | Solvent | Type of Substrate | Resistivity ρ, 10−7 Ω·m |
---|---|---|---|---|---|---|
Schubert et al., 2018 [27] | Inkjet printing | <200 | 20 | Water-based | Alumina | 60 |
Zea et al., 2019 [39] | Inkjet printing | 25–100 | 20.5 | Ethylene glycol and water | PEN | 6.3 |
Vechembre et al., 2001 [40] | Screen-printing | - | 65 | Organic | Alumina | 1.6 |
Vasiliev et al., 2015 [41] | Aerosol jet printing | 10–30 | 15–20 | Organic | Alumina | 30 |
This work | Aerosol jet printing | 18.2 | 25 | Ethylene glycol and water | Alumina | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsenov, P.V.; Efimov, A.A.; Ivanov, V.V. Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates. Polymers 2021, 13, 918. https://doi.org/10.3390/polym13060918
Arsenov PV, Efimov AA, Ivanov VV. Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates. Polymers. 2021; 13(6):918. https://doi.org/10.3390/polym13060918
Chicago/Turabian StyleArsenov, Pavel V., Alexey A. Efimov, and Victor V. Ivanov. 2021. "Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates" Polymers 13, no. 6: 918. https://doi.org/10.3390/polym13060918
APA StyleArsenov, P. V., Efimov, A. A., & Ivanov, V. V. (2021). Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates. Polymers, 13(6), 918. https://doi.org/10.3390/polym13060918