Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings
Abstract
:1. Introduction
1.1. Film Formation in Waterborne Coatings
1.2. Diffusion and Crosslinking
1.3. Inorganic Nanofillers
2. Preparation and Functionalization of Silica Nanostructures for Coating Applications
2.1. Compatibilization of Silica Nanostructures with the Polymer Matrix
2.2. Silica-Polymer Coupling Agents
Name | Chemical Structure | Ref. | |
---|---|---|---|
APTES | 3-Aminopropyl triethoxysilane | [74,75,76,77,78] | |
GPTMS | 3-Glycidoxypropyl trimethoxysilane | [80,81,82,83,84,100] | |
CPS | 4-((3-(trimethoxysilyl)propoxy) methyl)-1,3-dioxolan-2-one | [85] | |
BPTS | 3-(2-Bromoisobutyryl)propyl triethoxysilane | [86,87] | |
MPS | 3-Methacryloxypropyl trimethoxysilane | [29,72,79,88,89,90,91,92,93,94,95,96,97] | |
VTMS | Vinyltrimethoxysilane | [96] | |
PATMS | N-[3-(trimethoxysilyl)propyl]aniline | [98] | |
TEBA | Triethoxysilylbutyraldehyde | [99] | |
PFPS | Pentafluorophenyltriethoxysilane | [101] |
3. Incorporation of Silica in Polymer Materials
4. Applications of Hybrid Nanostructured Films
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rezaei, S.D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 2017, 159, 26–51. [Google Scholar] [CrossRef]
- Zeno, W.; Wicks, J.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Organic Coatings Science and Technology, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1985; Volume 13, ISBN 9780471698067. [Google Scholar]
- Yoon, J.; Lovell, P.A. Model reaction studies and crosslinking of dimethyl-meta-isopropenylbenzyl isocyanate containing ambient crosslinkable latex. Macromol. Chem. Phys. 2008, 209, 279–289. [Google Scholar] [CrossRef]
- Jones, F.N.; Nichols, M.E.; Pappas, S.P. Organic Coatings Science and Technology, 4th ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 9780471698067. [Google Scholar]
- Farinha, J.P.S.; Piçarra, S.; Baleizão, C.; Martinho, J.M.G. Smart Polymer Nanoparticles for High-Performance Water-Based Coatings. In Industrial Applications for Intelligent Polymers and Coatings; Springer: Cham, Switzerland, 2016; pp. 619–645. ISBN 978-3-319-26891-0. [Google Scholar]
- Aradian, A.; Raphaël, E.; De Gennes, P.G. A scaling theory of the competition between interdiffusion and cross-linking at polymer interfaces. Macromolecules 2002, 35, 4036–4043. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.W.; Winnik, M.A. Functional latex and thermoset latex films. J. Coat. Technol. Res. 2004, 1, 163–190. [Google Scholar] [CrossRef]
- Ludwig, I.; Schabel, W.; Kind, M.; Castaing, J.-C.; Ferlin, P. Drying and Film Formation of Industrial Waterborne Latices. AIChE J. 2006, 53, 549–560. [Google Scholar] [CrossRef]
- Ribeiro, T.; Baleizão, C.; Farinha, J.P.S. Functional films from silica/polymer nanoparticles. Materials 2014, 7, 3881–3900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, Y.; Pichot, C.; Graillat, C.; Joanicot, M.; Wong, K.; Maquet, J.; Lindner, P.; Cabane, B. Film formation with latex particles. Colloid Polym. Sci. 1992, 270, 806–821. [Google Scholar] [CrossRef]
- Steward, P.A.; Hearn, J.; Wilkinson, M.C. Overview of polymer latex film formation and properties. Adv. Colloid Interface Sci. 2000, 86, 195–267. [Google Scholar] [CrossRef]
- Hahn, K.; Ley, G.; Oberthür, R. On particle coalescence in latex films (II). Colloid Polym. Sci. 1988, 266, 631–639. [Google Scholar] [CrossRef]
- Yoo, J.N.; Sperling, S.L.H.; Glinka, C.J.; Kleina, A. Characterization of Film Formation from Polystyrene Latex Particles via SANS. 2. High Molecular Weight. Macromolecules 1991, 24, 2868–2876. [Google Scholar] [CrossRef]
- Winnik, M.A.; Wang, Y.; Haley, F. Latex film formation at the molecular level: The effect of coalescing aids on polymer diffusion. J. Coat. Technol. 1992, 64, 51–61. [Google Scholar]
- Farinha, J.P.S.; Martinho, J.M.G.; Yekta, A.; Winnik, M.A. Direct Nonradiative Energy Transfer in Polymer Interphases: Fluorescence Decay Functions from Concentration Profiles Generated by Fickian Diffusion. Macromolecules 1995, 28, 6084–6088. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Martinho, J.M.G. Electronic energy transfer in restricted geometries Application to the study of spherical and planar interphases of diblock copolymer films. J. Lumin. 1997, 72–74, 914–917. [Google Scholar] [CrossRef]
- Yekta, A.; Winnik, M.A.; Farinha, J.P.S.; Martinho, J.M.G. Dipole-dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. II. Systems with spherical symmetry. J. Phys. Chem. A 1997, 101, 1787–1792. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Spiro, J.G.; Winnik, M.A. Dipole-dipole electronic energy transfer: Fluorescence decay functions for arbitrary distributions of donors and acceptors in systems with cylindrical symmetry. J. Phys. Chem. B 2004, 108, 16392–16400. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Martinho, J.M.G. Resonance Energy Transfer in Polymer Interfaces. Fluoresc. Supermol. Polym. Nanosyst. 2008, 4, 215–255. [Google Scholar] [CrossRef]
- Ye, X.; Farinha, J.P.S.; Oh, J.K.; Winnik, M.A.; Wu, C. Polymer diffusion in PBMA latex films using a polymerizable benzophenone derivative as an energy transfer acceptor. Macromolecules 2003, 36, 8749–8760. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Martinho, J.M.G.; Kawaguchi, S.; Yekta, A.; Winnik, M.A. Latex film formation probed by nonradiative energy transfer: Effect of grafted and free poly(ethylene oxide) on a poly(n-butyl methacrylate) latex. J. Phys. Chem. 1996, 100, 12552–12558. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Vorobyova, O.; Winnik, M.A. An energy tranfer study of the interface thickness in blends of poly(butyl methacrylate) and poly(2-ethylhexyl methacrylate). Macromolecules 2000, 33, 5863–5873. [Google Scholar] [CrossRef]
- Pham, H.H.; Farinha, J.P.S.; Winnik, M.A. Cross-linking, miscibility, and interface structure in blends of poly(2-ethylhexyl methacrylate) copolymers. An energy transfer study. Macromolecules 2000, 33, 5850–5862. [Google Scholar] [CrossRef]
- Farinha, J.P.S.; Wu, J.; Winnik, M.A.; Farwaha, R.; Rademacher, J. Polymer diffusion in gel-containing poly(vinyl acetate-co-dibutyl maleate) latex films. Macromolecules 2005, 38, 4393–4402. [Google Scholar] [CrossRef]
- Piçarra, S.; Afonso, C.A.M.; Kurteva, V.B.; Fedorov, A.; Martinho, J.M.G.; Farinha, J.P.S. The influence of nanoparticle architecture on latex film formation and healing properties. J. Colloid Interface Sci. 2012, 368, 21–33. [Google Scholar] [CrossRef]
- Mizutani, T.; Arai, K.; Miyamoto, M.; Kimura, Y. Application of silica-containing nano-composite emulsion to wall paint: A new environmentally safe paint of high performance. Prog. Org. Coat. 2006, 55, 276–283. [Google Scholar] [CrossRef]
- Kobayashi, M.; Rharbi, Y.; Brauge, L.; Cao, L.; Winnik, M.A. Effect of silica as fillers on polymer interdiffusion in poly(butyl methacrylate) latex films. Macromolecules 2002, 35, 7387–7399. [Google Scholar] [CrossRef]
- Watanabe, M.; Tamai, T. Acrylic Polymer/Silica Organic-Inorganic Hybrid Emulsions for Coating Materials: Role of the Silane Coupling Agent. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 4736–4742. [Google Scholar] [CrossRef]
- Ribeiro, T.; Fedorov, A.; Baleizão, C.; Farinha, J.P.S. Formation of hybrid films from perylenediimide-labeled core–shell silica–polymer nanoparticles. J. Colloid Interface Sci. 2013, 401, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Martinho, J.M.G.; Farinha, J.P.S. Fluorescence Decay Methods for the Characterization of Latex Film Formation. JCT Coat. Tech. 2013, 10, 42–49. [Google Scholar]
- Farinha, J.P.S.; Martinho, J.M.G. Resonance energy transfer in polymer nanodomains. J. Phys. Chem. C 2008, 112, 10591–10601. [Google Scholar] [CrossRef]
- Ruch, F.; David, M.O.; Vallat, M.F. Adhesion in EPDM joints: Role of the interdiffusion mechanism on interfacial co-crosslinking. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 3189–3199. [Google Scholar] [CrossRef]
- Huang, S.R.; Lin, K.F.; Don, T.M.; Lee, C.F.; Wang, M.S.; Chiu, W.Y. Thermoresponsive conductive polymer composite thin film and fiber mat: Crosslinked PEDOT:PSS and P(NIPAAm-co-NMA) composite. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1078–1087. [Google Scholar] [CrossRef]
- Garrett, R.Y. Formaldehyde-Free, Self-Curing Interpolymers and Articles Prepared Therefrom; U.S. Patent 5,021,529, 4 June 1991. U.S. Patent and Trademark Office: Washington, DC, USA, 1991. [Google Scholar]
- Biale, G. Self-Crosslinking Vinyl Acetate-Ethylene Latexes; U.S. Patent 3,714,099, 30 January 1973. U.S. Patent and Trademark Office: Washington, DC, USA, 1973. [Google Scholar]
- Machotova, J.; Podzimek, S.; Kvasnicka, P.; Zgoni, H.; Snuparek, J.; Cerny, M. Effect of molar mass on film-forming properties of self-crosslinking latexes based on structured acrylic microgels. Prog. Org. Coat. 2016, 92, 23–28. [Google Scholar] [CrossRef]
- Hu, J.; Peng, K.; Guo, J.; Shan, D.; Kim, G.B.; Li, Q.; Gerhard, E.; Zhu, L.; Tu, W.; Lv, W.; et al. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. ACS Appl. Mater. Interfaces 2016, 8, 17499–17510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Huang, H.; Li, Y.; Chen, H. The Diacetone Acrylamide Crosslinking Reaction and Its Control of Core-Shell Polyacrylate Latices at Ambient Temperature. J. Appl. Polym. Sci. 2012, 123, 1822–1832. [Google Scholar] [CrossRef]
- González, I.; Asua, J.M.; Leiza, J.R. Crosslinking in acetoacetoxy functional waterborne crosslinkable latexes. Macromol. Symp. 2006, 243, 53–62. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, F.; Wang, H. Novel Organic-Inorganic Composites with High Thermal Conductivity for Electronic Packaging Applications: A Key Issue Review. Polym. Compos. 2017, 38, 803–813. [Google Scholar] [CrossRef]
- Saveleva, M.S.; Eftekhari, K.; Abalymov, A.; Douglas, T.E.L.; Volodkin, D.; Parakhonskiy, B.V.; Skirtach, A.G. Hierarchy of hybrid materials-the place of inorganics-in-organics in it, their composition and applications. Front. Chem. 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Yoo, B.R. Advanced silica/polymer composites: Materials and applications. J. Ind. Eng. Chem. 2016, 38, 1–12. [Google Scholar] [CrossRef]
- Jena, K.K.; Raju, K.V.S.N.; Narayan, R.; Rout, T.K. Sodium montmorillonite clay loaded novel organic-inorganic hybrid composites: Synthesis and characterization. Prog. Org. Coat. 2012, 75, 33–37. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, H.; Zhou, C.; Li, D.; Liu, Y.; Yan, C. Polyimide/kaolinite composite films: Synthesis and characterization of mechanical, thermal and waterproof properties. J. Taiwan Inst. Chem. Eng. 2014, 45, 2021–2028. [Google Scholar] [CrossRef]
- Madhup, M.K.; Shah, N.K.; Parekh, N.R. Investigation and improvement of abrasion resistance, water vapor barrier and anticorrosion properties of mixed clay epoxy nanocomposite coating. Prog. Org. Coat. 2017, 102, 186–193. [Google Scholar] [CrossRef]
- Madhup, M.K.; Shah, N.K.; Parekh, N.R. An Investigation of Abrasion Resistance Property of Clay-Epoxy Nanocomposite Coating. Mater. Sci. Res. India 2018, 15, 165–178. [Google Scholar] [CrossRef]
- Bakhtiar, N.S.A.A.; Akil, H.M.; Zakaria, M.R.; Kudus, M.H.A.; Othman, M.B.H. New generation of hybrid filler for producing epoxy nanocomposites with improved mechanical properties. Mater. Des. 2016, 91, 46–52. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, S.; Chen, L.; Jiang, D.; Shao, Q.; Zhang, B.; Zhai, Z.; Wang, C.; Zhao, M.; Ma, Y.; et al. Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers. Macromol. Chem. Phys. 2017, 218, 1700357. [Google Scholar] [CrossRef]
- Zhu, G.; Cui, X.; Zhang, Y.; Chen, S.; Dong, M.; Liu, H.; Shao, Q.; Ding, T.; Wu, S.; Guo, Z. Poly (vinyl butyral)/Graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer (Guildf) 2019, 172, 415–422. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Liu, W.; Pu, J.; Chen, H.; Zhao, H.; Li, X. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets. J. Hazard. Mater. 2019, 364, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhang, D.; Li, J.; Liu, T.; Pu, J.; Zhao, H.; Wang, L. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros. Sci. 2019, 147, 9–21. [Google Scholar] [CrossRef]
- Mohammadkhani, R.; Ramezanzadeh, M.; Saadatmandi, S.; Ramezanzadeh, B. Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-tox. Chem. Eng. J. 2020, 382, 122819. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, S.; Du, P.; Zhao, H.; Wang, L. An ionic liquid-graphene oxide hybrid nanomaterial: Synthesis and anticorrosive applications. Nanoscale 2018, 10, 8115–8124. [Google Scholar] [CrossRef]
- Rassouli, L.; Naderi, R.; Mahdavain, M. The role of micro/nano zeolites doped with zinc cations in the active protection of epoxy ester coating. Appl. Surf. Sci. 2017, 423, 571–583. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Ko, Y.G. Freestanding anticorrosion hybrid materials based on coordination interaction between metal-quinoline compounds and TiO2-MgO film. J. Colloid Interface Sci. 2020, 565, 86–95. [Google Scholar] [CrossRef]
- Gu, G.; Zhang, Z.; Dang, H. Preparation and characterization of hydrophobic organic-inorganic composite thin films of PMMA/SiO 2 /TiO 2 with low friction coefficient. Appl. Surf. Sci. 2004, 221, 129–135. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Ribeiro, T.; Rodrigues, A.S.; Calderon, S.; Fidalgo, A.; Gonçalves, J.L.; André, V.; Duarte, M.T.; Ferreira, P.J.; Farinha, J.P.S.; Baleizão, C. Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. J. Colloid Interface Sci. 2019, 561, 609–619. [Google Scholar] [CrossRef]
- Calderon, V.S.; Ribeiro, T.; Farinha, J.P.S.; Baleizão, C.; Ferreira, P.J. On the Structure of Amorphous Mesoporous Silica Nanoparticles by Aberration-Corrected STEM. Small 2018, 14, 1802180. [Google Scholar] [CrossRef]
- Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv. Healthc. Mater. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, T.; Coutinho, E.; Rodrigues, A.S.; Baleizão, C.; Farinha, J.P.S. Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. Nanoscale 2017, 9, 13485–13494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, H. Biocompatible SiO 2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential. J. Chem. 2015, 2015, 846328. [Google Scholar] [CrossRef]
- Moreno-Villaécija, M.Á.; Sedó-Vegara, J.; Guisasola, E.; Baeza, A.; Regí, M.V.; Nador, F.; Ruiz-Molina, D. Polydopamine-like Coatings as Payload Gatekeepers for Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 7661–7669. [Google Scholar] [CrossRef]
- Rahsepar, M.; Mohebbi, F. Enhancement of the wear resistance of epoxy coating in presence of MBT-loaded mesoporous silica nanocontainers. Tribol. Int. 2018, 118, 148–156. [Google Scholar] [CrossRef]
- Mizoshita, N.; Tanaka, H. Versatile Antireflection Coating for Plastics: Partial Embedding of Mesoporous Silica Nanoparticles onto Substrate Surface. ACS Appl. Mater. Interfaces 2016, 8, 31330–31338. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, H.; Song, S.; Zhang, Y. Improving thermal conductivity of styrene-butadiene rubber composites by incorporating mesoporous silica@solvothermal reduced graphene oxide hybrid nanosheets with low graphene content. Compos. Sci. Technol. 2017, 150, 174–180. [Google Scholar] [CrossRef]
- Shi, H.; Wu, L.; Wang, J.; Liu, F.; Han, E.H. Sub-micrometer mesoporous silica containers for active protective coatings on AA 2024-T3. Corros. Sci. 2017, 127, 230–239. [Google Scholar] [CrossRef]
- Borisova, D.; Akçakayiran, D.; Schenderlein, M.; Möhwald, H.; Shchukin, D.G. Nanocontainer-based anticorrosive coatings: Effect of the container size on the self-healing performance. Adv. Funct. Mater. 2013, 23, 3799–3812. [Google Scholar] [CrossRef]
- Shang, X.Y.; Zhu, Z.K.; Yin, J.; Ma, X.D. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem. Mater. 2002, 14, 71–77. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, A.; Song, X.; Liu, X. Synthesis and characterization of waterborne UV-curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica. Prog. Org. Coat. 2013, 76, 1032–1039. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Trifković, K.T.; Bugarski, B.; Pavlović, V.B.; Džunuzović, J.; Tomić, M.; Marinković, A.D. High performance unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties. Express Polym. Lett. 2016, 10, 139–159. [Google Scholar] [CrossRef]
- Qu, A.; Wen, X.; Pi, P.; Cheng, J.; Yang, Z. Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J. Colloid Interface Sci. 2008, 317, 62–69. [Google Scholar] [CrossRef]
- Maghami, S.; Dierkes, W.K.; Noordermeer, J.W.M. Functionalized SBRs in silica-reinforced tire tread compounds: Evidence for interations between filler and zinc oxide. Rubber Chem. Technol. 2016, 89, 559–572. [Google Scholar] [CrossRef]
- Meador, M.A.B.; Scherzer, C.M.; Vivod, S.L.; Quade, D.; Nguyen, B.N. Epoxy reinforced aerogels made using a streamlined process. ACS Appl. Mater. Interfaces 2010, 2, 2162–2168. [Google Scholar] [CrossRef]
- Karimi, A.A.; Ahmad, Z. Effect of interface on the thermal mechanical properties of chemically bonded epoxy-silica hybrids. Prog. Org. Coat. 2017, 106, 137–144. [Google Scholar] [CrossRef]
- Ammar, S.; Ramesh, K.; Ma, I.A.W.; Farah, Z.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K. Studies on SiO2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity. Surf. Coat. Technol. 2017, 324, 536–545. [Google Scholar] [CrossRef]
- Barna, E.; Bommer, B.; Kürsteiner, J.; Vital, A.; Trzebiatowski, O.V.; Koch, W.; Schmid, B.; Graule, T. Innovative, scratch proof nanocomposites for clear coatings. Compos. Part A Appl. Sci. Manuf. 2005, 36, 473–480. [Google Scholar] [CrossRef]
- Santiago, A.M.; Ribeiro, T.; Rodrigues, A.S.; Ribeiro, B.; Frade, R.F.M.; Baleizão, C.; Farinha, J.P.S. Multifunctional Hybrid Silica Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. Eur. J. Inorg. Chem. 2015, 2015, 4579–4587. [Google Scholar] [CrossRef]
- Khabibullin, A.; Kopeć, M.; Matyjaszewski, K. Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1292–1300. [Google Scholar] [CrossRef]
- Tawiah, B.; Zhang, L.; Tian, A.; Fu, S.S. Coloration of aluminum pigment using SiO2 and γ-glycidoxypropyltrimethoxysilane with dichlorotriazine reactive dye. Pigment. Resin Technol. 2016, 45, 335–345. [Google Scholar] [CrossRef]
- Acebo, C.; Fernández-Francos, X.; Santos, J.I.; Messori, M.; Ramis, X.; Serra, À. Hybrid epoxy networks from ethoxysilyl-modified hyperbranched poly(ethyleneimine) and inorganic reactive precursors. Eur. Polym. J. 2015, 70, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jiang, H.; Shen, Y.; Zhou, L. Antireflection coating on silk fabric fabricated from reactive silica nanoparticles and its deepening color performance. J. Sol. Gel Sci. Technol. 2015, 74, 488–498. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Z.; Zhao, X.; Li, Y.; Li, J. Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO2 with Long Poly(methyl methacrylate) Chains and the in Situ Formation of Janus SiO2 Nanoparticles Anchored Exclusively at the Interface. ACS Appl. Mater. Interfaces 2017, 9, 14358–14370. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Wang, H.; Jiang, D.; Parkin, I.P.; Zhang, X. Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic. RSC Adv. 2019, 9, 12547–12554. [Google Scholar] [CrossRef] [Green Version]
- Türünç, O.; Kayaman-Apohan, N.; Kahraman, M.V.; Menceloǧlu, Y.; Güngör, A. Nonisocyanate based polyurethane/silica nanocomposites and their coating performance. J. Sol. Gel Sci. Technol. 2008, 47, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, B.; Constable, A.N.; Brittain, W.J. A novel route to organic-inorganic hybrid nanomaterials. Macromol. Rapid Commun. 2008, 29, 1828–1833. [Google Scholar] [CrossRef]
- Huang, Y.; Morinaga, T.; Tai, Y.; Tsujii, Y.; Ohno, K. Immobilization of semisoft colloidal crystals formed by polymer-brush-afforded hybrid particles. Langmuir 2014, 30, 7304–7312. [Google Scholar] [CrossRef]
- Ribeiro, T.; Baleizão, C.; Farinha, J.P.S. Synthesis and Characterization of Perylenediimide Labeled Core-Shell Hybrid Silica-Polymer Nanoparticles. J. Phys. Chem. C 2009, 113, 18082–18090. [Google Scholar] [CrossRef]
- Schoth, A.; Adurahim, E.S.; Bahattab, M.A.; Landfester, K.; Muñoz-Espí, R. Waterborne Polymer/Silica Hybrid Nanoparticles and Their Structure in Coatings. Macromol. React. Eng. 2016, 10, 47–54. [Google Scholar] [CrossRef]
- Riazi, H.; Jalali-Arani, A.; Afshar Taromi, F. In situ synthesis of silica/polyacrylate nanocomposite particles simultaneously bearing carboxylate and sulfonate functionalities via soap-free seeded emulsion polymerization. Mater. Chem. Phys. 2018, 207, 470–478. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, L.U.; Kim, C.K. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules 2007, 8, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.E.L.; Wolfs, D.P.; Van Der Linde, M.C.; Hovens, J.H.P.; Tinnemans, A.H.A. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method. Prog. Org. Coat. 2004, 51, 312–320. [Google Scholar] [CrossRef]
- Ji, H.; Wang, S.; Yang, X. Preparation of polymer/silica/polymer tri-layer hybrid materials and the corresponding hollow polymer microspheres with movable cores. Polymer (Guildf) 2009, 50, 133–140. [Google Scholar] [CrossRef]
- Lee, C.K.; Don, T.M.; Lai, W.C.; Chen, C.C.; Lin, D.J.; Cheng, L.P. Preparation and properties of nano-silica modified negative acrylate photoresist. Thin Solid Films 2008, 516, 8399–8407. [Google Scholar] [CrossRef]
- Song, T.; Liu, T.; Yang, X.; Bai, F. Raspberry-like particles via the heterocoagulated reaction between reactive epoxy and amino groups. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 60–65. [Google Scholar] [CrossRef]
- Liang, J.; Wang, L.; Bao, J.; He, L. SiO2-g-PS/fluoroalkylsilane composites for superhydrophobic and highly oleophobic coatings. Colloids Surf. A Physicochem. Eng. Asp. 2016, 507, 26–35. [Google Scholar] [CrossRef]
- Sarsabili, M.; Kalantari, K.; Khezri, K. SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles: Investigating thermal properties. J. Therm. Anal. Calorim. 2016, 126, 1261–1272. [Google Scholar] [CrossRef]
- Weng, C.J.; Chen, Y.L.; Jhuo, Y.S.; Yi-Li, L.; Yeh, J.M. Advanced antistatic/anticorrosion coatings prepared from polystyrene composites incorporating dodecylbenzenesulfonic acid-doped SiO2@polyaniline core-shell microspheres. Polym. Int. 2013, 62, 774–782. [Google Scholar] [CrossRef]
- Liu, S.; Han, M. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes. Adv. Funct. Mater. 2005, 15, 961–967. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Jazani, O.M.; Navarchian, A.H.; Shabanian, M.; Vahabi, H.; Saeb, M.R. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Appl. Surf. Sci. 2018, 447, 152–164. [Google Scholar] [CrossRef]
- Xu, J.; Bartels, J.W.; Bohnsack, D.A.; Tseng, T.C.; Mackay, M.E.; Wooley, K.L. Hierarchical inorganic-organic nanocomposites possessing amphiphilic and morphological complexities: Influence of nanofiller dispersion on mechanical performance. Adv. Funct. Mater. 2008, 18, 2733–2744. [Google Scholar] [CrossRef]
- Kumar, V.; Misra, N.; Paul, J.; Bhardwaj, Y.K.; Goel, N.K.; Francis, S.; Sarma, K.S.S.; Varshney, L. Organic/inorganic nanocomposite coating of bisphenol A diglycidyl ether diacrylate containing silica nanoparticles via electron beam curing process. Prog. Org. Coat. 2013, 76, 1119–1126. [Google Scholar] [CrossRef]
- Hood, M.A.; Mari, M.; Muñoz-Espí, R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 2014, 7, 4057–4087. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zheng, S.; Chen, H.; Yao, M.; Zhang, K.; Jia, X.; Mou, J.; Xu, H.; Wu, R.; Shi, J. A combined “RAFT” and “Graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: Towards enhanced tumor accumulation and cancer therapy efficacy. J. Mater. Chem. B 2014, 2, 5828–5836. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.M.; Castanheira, E.J.; Alves, S.P.C.; Baleizão, C.; Farinha, J.P. Grafting with RAFT-gRAFT strategies to prepare hybrid nanocarriers with core-shell architecture. Polymers 2020, 12, 2175. [Google Scholar] [CrossRef] [PubMed]
- Asai, M.; Zhao, D.; Kumar, S.K. Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles. ACS Nano 2017, 11, 7028–7035. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Spanswick, J. Controlled/living radical polymerization. Mater. Today 2005, 8, 26–33. [Google Scholar] [CrossRef]
- Czarnecki, S.; Bertin, A. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol–Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science. Chem. Eur. J. 2018, 24, 3354–3373. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Ribeiro, T.; Fernandes, F.; Farinha, J.P.S.; Baleizão, C. Intrinsically fluorescent silica nanocontainers: A promising theranostic platform. Microsc. Microanal. 2013, 19, 1216–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumnantong, D.; Rempel, G.L.; Prasassarakich, P. Polyisoprene-silica nanoparticles synthesized via RAFT emulsifier-free emulsion polymerization using water-soluble initiators. Polymers 2017, 9, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, J.L.M.; Crucho, C.I.C.; Alves, S.P.C.; Baleizão, C.; Farinha, J.P.S. Hybrid mesoporous nanoparticles for pH-actuated controlled release. Nanomaterials 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Désert, A.; Chaduc, I.; Fouilloux, S.; Taveau, J.C.; Lambert, O.; Lansalot, M.; Bourgeat-Lami, E.; Thill, A.; Spalla, O.; Ravaine, S.; et al. High-yield preparation of polystyrene/silica clusters of controlled morphology. Polym. Chem. 2012, 3, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Parvole, J.; Chaduc, I.; Ako, K.; Spalla, O.; Thill, A.; Ravaine, S.; Duguet, E.; Lansalot, M.; Bourgeat-Lami, E. Efficient synthesis of snowman- and dumbbell-like silica/polymer anisotropic heterodimers through emulsion polymerization using a surface-anchored cationic initiator. Macromolecules 2012, 45, 7009–7018. [Google Scholar] [CrossRef]
- Reculusa, S.; Poncet-Legrand, C.; Ravaine, S.; Mingotaud, C.; Duguet, E.; Bourgeat-Lami, E. Syntheses of raspberrylike silica/polystyrene materials. Chem. Mater. 2002, 14, 2354–2359. [Google Scholar] [CrossRef]
- Mehlhase, S.; Schäfer, C.G.; Morsbach, J.; Schmidt, L.; Klein, R.; Frey, H.; Gallei, M. Vinylphenylglycidyl ether-based colloidal architectures: High-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. RSC Adv. 2014, 4, 41348–41352. [Google Scholar] [CrossRef] [Green Version]
- Bourgeat-Lami, E.; França, A.J.P.G.; Chaparro, T.C.; Silva, R.D.; Dugas, P.Y.; Alves, G.M.; Santos, A.M. Synthesis of polymer/silica hybrid latexes by surfactant-free RAFT-mediated emulsion polymerization. Macromolecules 2016, 49, 4431–4440. [Google Scholar] [CrossRef]
- Gan, S.; Yang, P.; Yang, W. Interface-directed sol-gel: Direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics. Sci. China Chem. 2010, 53, 173–182. [Google Scholar] [CrossRef]
- Abenojar, J.; Tutor, J.; Ballesteros, Y.; del Real, J.C.; Martínez, M.A. Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos. Part B Eng. 2017, 120, 42–53. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, P.C.; Peng, C.J.; Hwang, J.Z.; Chen, K.N. Flame retardation behaviors of UV-curable phosphorus-containing PU coating system. J. Polym. Eng. 2013, 33, 749–756. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y. Preparation of fast-drying waterborne nano-complex traffic-marking paint. J. Coat. Technol. Res. 2012, 9, 151–156. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, W.; Duan, H.; Liu, Y.; Wang, X.; Yang, J. Realization of reinforcing and toughening poly (phenylene sulfide) with rigid silica nanoparticles. J. Polym. Res. 2016, 23. [Google Scholar] [CrossRef]
- Sbardella, F.; Bracciale, M.P.; Santarelli, M.L.; Asua, J.M. Progress in Organic Coatings Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Prog. Org. Coat. 2020, 149, 105897. [Google Scholar] [CrossRef]
- Karamanolevski, P.; Buzarovska, A.; Bogoeva-gaceva, G. The Effect of Curing Agents on Basic Properties of Silicone-epoxy Hybrid Resin. Silicon 2018, 10, 2915–2925. [Google Scholar] [CrossRef]
- Shen, K.; Yu, M.; Li, Q.; Sun, W.; Zhang, X.; Quan, M.; Liu, Z.; Shi, S.; Gong, Y. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics. Appl. Surf. Sci. 2017, 426, 694–703. [Google Scholar] [CrossRef]
- Zhang, G.; Kataphinan, W.; Teye-Mensah, R.; Katta, P.; Khatri, L.; Evans, E.A.; Chase, G.G.; Ramsier, R.D.; Reneker, D.H. Electrospun nanofibers for potential space-based applications. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2005, 116, 353–358. [Google Scholar] [CrossRef]
- Dong, H.; Ye, P.; Zhong, M.; Pietrasik, J.; Drumright, R.; Matyjaszewski, K. Superhydrophilic Surfaces via Polymer−SiO2 Nanocomposites. Langmuir 2010, 26, 15567–15573. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, X.; Jie, Z.; Yang, H.; Yang, S.; Liang, J. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles. J. Nanopart. Res. 2014, 16, 2454. [Google Scholar] [CrossRef]
- Akram, D.; Hakami, O.; Sharmin, E.; Ahmad, S. Castor and Linseed oil polyurethane/TEOS hybrids as protective coatings: A synergistic approach utilising plant oil polyols, a sustainable resource. Prog. Org. Coat. 2017, 108, 1–14. [Google Scholar] [CrossRef]
- Kawahara, T.; Takeuchi, Y.; Wei, G.; Shirai, K.; Yamauchi, T.; Tsubokawa, N. Preparation of Antibacterial Polymer-grafted Silica Nanoparticle and Surface Properties of Composite Filled with the Silica (2). Polym. J. 2009, 41, 744–751. [Google Scholar] [CrossRef]
- Il’ina, M.A.; Mashlyakovskii, L.N.; Drinberg, A.S.; Khomko, E.V.; Garabadzhiu, A.V. Silicon-Containing Epoxy Composites and Their Use in Marine Coatings Technology. Russ. J. Appl. Chem. 2019, 92, 530–542. [Google Scholar] [CrossRef]
- Yamashita, R.; Takeuchi, Y.; Kikuchi, H.; Shirai, K.; Yamauchi, T.; Tsubokawa, N. Preparation of Antibacterial Polymer-grafted Nano-sized Silica and Surface Properties of Silicone Rubber Filled with the Silica. Polym. J. 2006, 38, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Chen, X.; Zhu, X.; Dong, A.; Zhang, J. A facile strategy to fabricate covalently linked raspberry-like nanocomposites with pH and thermo tunable structures. RSC Adv. 2016, 6, 40991–41001. [Google Scholar] [CrossRef]
- Hao, L.F.; An, Q.F.; Xu, W.; Wang, Q.J. Synthesis of fluoro-containing superhydrophobic cotton fabric with washing resistant property using nano-SiO2 sol-gel method. Adv. Mater. Res. 2010, 121–122, 23–26. [Google Scholar] [CrossRef]
- Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S.; Lellouche, J.P. Durable bonding of silica nanoparticles to polymers by photoradiation for control of surface properties. Polym. Adv. Technol. 2014, 25, 723–731. [Google Scholar] [CrossRef]
- Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S.; Lellouche, J.P. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles. AIP Conf. Proc. 2015, 1664, 070001. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.R.; Budy, S.M.; Thrasher, C.J.; Iacono, S.T. Synthesis of fluorinated silica nanoparticles containing latent reactive groups for post-synthetic modification and for tunable surface energy. Nanoscale 2016, 8, 16212–16220. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shen, Y.; Wang, L.; Ding, Y.; Cai, Z. Preparation of vinyl silica-based organic/inorganic nanocomposites and superhydrophobic polyester surfaces from it. Colloid Polym. Sci. 2015, 293, 2359–2371. [Google Scholar] [CrossRef]
- Cho, E.C.; Chang-Jian, C.W.; Chen, H.C.; Chuang, K.S.; Zheng, J.H.; Hsiao, Y.S.; Lee, K.C.; Huang, J.H. Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chem. Eng. J. 2017, 314, 347–357. [Google Scholar] [CrossRef]
- Nikolic, M.; Sanadi, A.R.; Lof, D.; Barsberg, S.T. Influence of colloidal nano-silica on alkyd autoxidation. J. Mater. Sci. 2017, 52, 7158–7165. [Google Scholar] [CrossRef]
- Sharmin, E.; Zafar, F.; Akram, D.; Alam, M.; Ahmad, S. Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crops Prod. 2015, 76, 215–229. [Google Scholar] [CrossRef]
- Theodoratou, A.; Bonnet, L.; Dieudonné, P.; Massiera, G.; Etienne, P.; Robin, J.J.; Lapinte, V.; Chopineau, J.; Oberdisse, J.; Aubert-Pouëssel, A. Vegetable oil hybrid films cross-linked at the air-water interface: Formation kinetics and physical characterization. Soft Matter 2017, 13, 4569–4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, P.; Guo, Z. Bioinspired silica-based superhydrophobic materials. Appl. Surf. Sci. 2017, 426, 1–18. [Google Scholar] [CrossRef]
- Giamberini, M.; Malucelli, G. Hybrid organic-inorganic UV-cured films containing liquid-crystalline units. Thin Solid Films 2013, 548, 150–156. [Google Scholar] [CrossRef]
Inorganic Filler | Organic Matrix | Properties | References |
---|---|---|---|
Clay | Polyimide | Adhesive strength, abrasion resistance, impact strength, water absorption resistance | [43,44] |
Epoxy | Abrasion resistance, water vapor barrier, corrosion resistance | [45,46] | |
Carbon Nanotubes | Epoxy | Tensile strength, electric insulation | [47,48] |
Graphene Oxide | Poly(vinyl butyral) | Corrosion resistance, superhydrophobicity | [49] |
Epoxy | Corrosion resistance, superhydrophobicity | [50,51,52,53] | |
Zeolite | Epoxy | Corrosion resistance | [54] |
TiO2 | Metal-quinoline derivatives; poly(methyl methacrylate) | Corrosion resistance, low friction | [55,56] |
Applications | Organic Matrix | References |
---|---|---|
Flame retardancy | Polyurethane, EGMP a | [119] |
Solvent and chemical resistance | Epoxy | [123,124] |
Stain resistance | Epoxy | [102] |
PIT b | [124] | |
Anti-cavitation | Epoxy | [81] |
Robustness | Phenylene Sulfide | [121] |
Nylon-6 | [125] | |
Antimicrobial | PQDMAEMA c, PTMOSPMA d | [126] |
TS-DMH e | [127] | |
Polyols | [128] | |
PVBBPC f, Silicone rubber | [129] | |
Epoxy | [130] | |
PSBDPS g | [131] | |
Superhydrophobic | Epoxy | [84] |
Epoxy-functionalized methacrylate | [95] | |
PIT b | [124] | |
TSI-PDMAEMA-PS h | [132] | |
Fluoroloakylosiloxane polymer | [133] | |
Urethane acrylate | [134,135] | |
PFCP i -based chlorosilane | [136] | |
DFMA j | [137] | |
Poly(methyl hydrosiloxane) | [138] | |
Photoactive, fluorescent | Poly(butyl methacrylate) | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.D.; Ribeiro, T.; Farinha, J.P.S. Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings. Polymers 2021, 13, 1003. https://doi.org/10.3390/polym13071003
Martins TD, Ribeiro T, Farinha JPS. Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings. Polymers. 2021; 13(7):1003. https://doi.org/10.3390/polym13071003
Chicago/Turabian StyleMartins, Tiago D., Tânia Ribeiro, and José Paulo S. Farinha. 2021. "Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings" Polymers 13, no. 7: 1003. https://doi.org/10.3390/polym13071003
APA StyleMartins, T. D., Ribeiro, T., & Farinha, J. P. S. (2021). Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings. Polymers, 13(7), 1003. https://doi.org/10.3390/polym13071003