Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Fabrication
2.3. Experimental Setup, Electrical Measurements, and Optimization
2.4. Theoretical Background
3. Results and Discussion
3.1. Electrochemical Characterization of PAni Modified PGE
3.2. Underpotential Effect of PAni Modified PGE
3.3. Potentiodynamic Profiles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Torti, S.V.; Torti, F.M. Winning the War with Iron. Nat. Nanotechnol. 2019, 14, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Rolff, M.; Schottenheim, J.; Decker, H.; Tuczek, F. Copper–O2 Reactivity of Tyrosinase Models towards External Monophenolic Substrates: Molecular Mechanism and Comparison with the Enzyme. Chem. Soc. Rev. 2011, 40, 4077. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef] [PubMed]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Chojnacka, K.; Mikulewicz, M. Green Analytical Methods of Metals Determination in Biosorption Studies. Trends Anal. Chem. 2019, 116, 254–265. [Google Scholar] [CrossRef]
- Pytlakowska, K.; Kocot, K.; Pilch, M.; Zubko, M. Ultrasound-Assisted Dispersive Micro-Solid Phase Extraction Using Molybdenum Disulfide Supported on Reduced Graphene Oxide for Energy Dispersive X-Ray Fluorescence Spectrometric Determination of Chromium Species in Water. Microchim. Acta 2020, 187, 542. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A Review of the Identification and Detection of Heavy Metal Ions in the Environment by Voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Shah, A.; Sultan, S.; Zahid, A.; Aftab, S.; Nisar, J.; Nayab, S.; Qureshi, R.; Khan, G.S.; Hussain, H.; Ozkan, S.A. Highly Sensitive and Selective Electrochemical Sensor for the Trace Level Detection of Mercury and Cadmium. Electrochim. Acta 2017, 258, 1397–1403. [Google Scholar] [CrossRef]
- Wang, J.; Su, X.; Gao, D.; Chen, R.; Mu, Y.; Zhang, X.; Wang, L. Capillary Sensors Composed of CdTe Quantum Dots for Real-Time In Situ Detection of Cu 2+. ACS Appl. Nano Mater. 2021, 4, 8990–8997. [Google Scholar] [CrossRef]
- Peng, Q.; Shi, X.; Yan, X.; Ji, L.; Hu, Y.; Shi, G.; Yu, Y. Electrochemical Strategy for Analyzing the Co-Evolution of Cu 2+ and • OH Levels at the Early Stages of Transgenic AD Mice. ACS Appl. Mater. Interfaces 2020, 12, 42595–42603. [Google Scholar] [CrossRef]
- Gu, H.; Hou, Q.; Liu, Y.; Cai, Y.; Guo, Y.; Xiang, H.; Chen, S. On-Line Regeneration of Electrochemical Biosensor for in Vivo Repetitive Measurements of Striatum Cu2+ under Global Cerebral Ischemia/Reperfusion Events. Biosens. Bioelectron. 2019, 135, 111–119. [Google Scholar] [CrossRef]
- Yavarinasab, A.; Janfaza, S.; Tahmooressi, H.; Ghazi, M.; Tasnim, N.; Hoorfar, M. A Selective Polypyrrole-Based Sub-Ppm Impedimetric Sensor for the Detection of Dissolved Hydrogen Sulfide and Ammonia in a Mixture. J. Hazard. Mater. 2021, 416, 125892. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y.; Sheng, T.; Zhao, D.; Yuan, H.; Liu, F.; Liu, X.; Zhu, X.; Zhang, L.; Lu, J. Amperometric Sensor for Dopamine Based on Surface-Graphenization Pencil Graphite Electrode Prepared by in-Situ Electrochemical Delamination. Microchim. Acta 2019, 186, 324. [Google Scholar] [CrossRef]
- Kariuki, J.K. An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes. J. Electrochem. Soc. 2012, 159, H747–H751. [Google Scholar] [CrossRef]
- Li, D.; Podlaha, E.J. Template-Assisted Electrodeposition of Porous Fe–Ni–Co Nanowires with Vigorous Hydrogen Evolution. Nano Lett. 2019, 19, 3569–3574. [Google Scholar] [CrossRef]
- Farooq, S.; Tahir, A.A.; Krewer, U.; Shah, A.A.; Bilal, S. Efficient Photocatalysis through Conductive Polymer Coated FTO Counter Electrode in Platinum Free Dye Sensitized Solar Cells. Electrochim. Acta 2019, 320, 134544. [Google Scholar] [CrossRef]
- Opoku, H.; Lee, J.H.; Nketia-Yawson, B.; Bae, S.; Lee, J.-J.; Ahn, H.; Jo, J.W. Configurationally Random Polythiophene for Improved Polymer Ordering and Charge-Transporting Ability. ACS Appl. Mater. Interfaces 2020, 12, 40599–40606. [Google Scholar] [CrossRef]
- Rahman, S.U.; Bilal, S.; ul Haq Ali Shah, A. Synthesis and Characterization of Polyaniline-Chitosan Patches with Enhanced Stability in Physiological Conditions. Polymers 2020, 12, 2870. [Google Scholar] [CrossRef]
- Ullah, R.; Yaseen, S.; Ali Shah, A.-U.-H.; Bilal, S.; Kamran, M.; Rahim, M. Anticorrosive Polyaniline Synthesized Using Coconut Oil as the Dispersion Medium. Mater. Chem. Phys. 2021, 273, 125071. [Google Scholar] [CrossRef]
- Rahman, S.; Röse, P.; Surati, M.; Shah, A.A.; Krewer, U.; Bilal, S. 3D Polyaniline Nanofibers Anchored on Carbon Paper for High-Performance and Light-Weight Supercapacitors. Polymers 2020, 12, 2705. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Röse, P.; ul Haq Ali Shah, A.; Krewer, U.; Bilal, S.; Farooq, S. Exploring the Functional Properties of Sodium Phytate Doped Polyaniline Nanofibers Modified FTO Electrodes for High-Performance Binder Free Symmetric Supercapacitors. Polymers 2021, 13, 2329. [Google Scholar] [CrossRef] [PubMed]
- ur Rahman, S.; Röse, P.; ul Haq Ali Shah, A.; Krewer, U.; Bilal, S. An Amazingly Simple, Fast and Green Synthesis Route to Polyaniline Nanofibers for Efficient Energy Storage. Polymers 2020, 12, 2212. [Google Scholar] [CrossRef] [PubMed]
- Zia, T.H.; Ali Shah, A.H. Understanding the Adsorption of 1 NLB Antibody on Polyaniline Nanotubes as a Function of Zeta Potential and Surface Charge Density for Detection of Hepatitis C Core Antigen: A Label-Free Impedimetric Immunosensor. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127076. [Google Scholar] [CrossRef]
- Song, Z.; Sheng, G.; Cui, Y.; Li, M.; Song, Z.; Ding, C.; Luo, X. Low Fouling Electrochemical Sensing in Complex Biological Media by Using the Ionic Liquid-Doped Conducting Polymer PEDOT: Application to Voltammetric Determination of Dopamine. Microchim. Acta 2019, 186, 220. [Google Scholar] [CrossRef]
- Cantalapiedra, A.; Gismera, M.J.; Procopio, J.R.; Sevilla, M.T. Electrochemical Sensor Based on Polystyrene Sulfonate—Carbon Nanopowders Composite for Cu (II) Determination. Talanta 2015, 139, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Sun, J.; Li, Y.; Xia, D.; Qi, T.; Liu, K.; Deng, H.; Shen, W.; Lee, H.K. PH-Dependent Selective Ion Exchange Based on (Ethylenediamintetraacetic Acid-Nickel)-Layered Double Hydroxide to Catalyze the Polymerization of Aniline for Detection of Cu2+ and Fe3+. Talanta 2018, 187, 287–294. [Google Scholar] [CrossRef]
- Brosel-Oliu, S.; Abramova, N.; Uria, N.; Bratov, A. Impedimetric Transducers Based on Interdigitated Electrode Arrays for Bacterial Detection—A Review. Anal. Chim. Acta 2019, 1088, 1–19. [Google Scholar] [CrossRef]
- Ragoisha, G.A.; Bondarenko, A.S. Potentiodynamic Electrochemical Impedance Spectroscopy. Electrochim. Acta 2005, 50, 1553–1563. [Google Scholar] [CrossRef]
- Ragoisha, G.A.; Bondarenko, A.S.; Osipovich, N.P.; Rabchynski, S.M.; Streltsov, E.A. Multiparametric Characterisation of Metal-Chalcogen Atomic Multilayer Assembly by Potentiodynamic Electrochemical Impedance Spectroscopy. Electrochim. Acta 2008, 53, 3879–3888. [Google Scholar] [CrossRef]
- Belarb, E.; Blas-Ferrando, V.M.; Haro, M.; Maghraoui-Meherzi, H.; Gimenez, S. Electropolymerized Polyaniline: A Promising Hole Selective Contact in Organic Photoelectrochemical Cells. Chem. Eng. Sci. 2016, 154, 143–149. [Google Scholar] [CrossRef]
- Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a New Sensitive Layer for Gas Sensors. Anal. Chim. Acta 2003, 475, 1–15. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs Nanocomposite Modified Electrode for Electrochemical Determination of Copper (II), Lead (II) and Mercury (II) Ions. Electrochim. Acta 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Camacho, C.S.; Mesquita, J.C.; Rodrigues, J. Electrodeposition of Polyaniline on Self-Assembled Monolayers on Graphite for the Voltammetric Detection of Iron(II). Mater. Chem. Phys. 2016, 184, 261–268. [Google Scholar] [CrossRef]
- Yavarinasab, A.; Tahmooressi, H.; Hoorfar, M.; Janfaza, S.; Montazeri, M.M.; Tasnim, N.; Farahani, A.D.; Kadota, P.; Markin, P.; Dalili, A.; et al. A Graphene-Based Chemical Sensor for Hydrogen Sulfide Measurement in Water. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Harrington, D.A.; van den Driessche, P. Mechanism and Equivalent Circuits in Electrochemical Impedance Spectroscopy. Electrochim. Acta 2011, 56, 8005–8013. [Google Scholar] [CrossRef] [Green Version]
- Ha, P.T.; Moon, H.; Kim, B.H.; Ng, H.Y.; Chang, I.S. Determination of Charge Transfer Resistance and Capacitance of Microbial Fuel Cell through a Transient Response Analysis of Cell Voltage. Biosens. Bioelectron. 2010, 25, 1629–1634. [Google Scholar] [CrossRef]
- Chi, Y.-W.; Hu, C.-C.; Shen, H.-H.; Huang, K.-P. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Lett. 2016, 16, 5719–5727. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, F.; Abdillah, O.B.; Stavila, E.; Aimon, A.H. The Influence of Copper Addition on the Electrical Conductivity and Charge Transfer Resistance of Reduced Graphene Oxide (RGO). New J. Chem. 2018, 42, 16362–16371. [Google Scholar] [CrossRef]
- Kalanidhi, K.; Nagaraaj, P.; Aswathy, C.A.; Vanthana Sree, G. A Highly Selective and Sensitive Spectroscopic Method for Detection of Cu2+ in Aqueous Solution Using Polyaniline. Chem. Phys. Lett. 2020, 739, 136929. [Google Scholar] [CrossRef]
- Yavarinasab, A.; Janfaza, S.; Tasnim, N.; Tahmooressi, H.; Dalili, A.; Hoorfar, M. Graphene/Poly (Methyl Methacrylate) Electrochemical Impedance-Transduced Chemiresistor for Detection of Volatile Organic Compounds in Aqueous Medium. Anal. Chim. Acta 2020, 1109, S0003267020303032. [Google Scholar] [CrossRef]
- Bondarenko, A.S.; Ragoisha, G.A.; Osipovich, N.P.; Streltsov, E.A. Potentiodynamic Electrochemical Impedance Spectroscopy of Lead Upd on Polycrystalline Gold and on Selenium Atomic Underlayer. Electrochem. Commun. 2005, 7, 631–636. [Google Scholar] [CrossRef]
- Paul, E.W.; Ricco, A.J.; Wrighton, M.S. Resistance of Polyaniline Films as a Function of Electrochemical Potential and the Fabrication of Polyaniline-Based Microelectronic Devices. J. Phys. Chem. 1985, 89, 1441–1447. [Google Scholar] [CrossRef]
- Xiong, J.-J.; Huang, P.-C.; Zhang, C.-Y.; Wu, F.-Y. Colorimetric Detection of Cu2+ in Aqueous Solution and on the Test Kit by 4-Aminoantipyrine Derivatives. Sens. Actuators B Chem. 2016, 226, 30–36. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Ren, H.; Chae, J. Detection of Copper Ions in Drinking Water Using the Competitive Adsorption of Proteins. Biosens. Bioelectron. 2014, 57, 179–185. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Gicevicius, M.; Ramanaviciene, A.; Shirsat, M.D.; Viter, R.; Ramanavicius, A. Hybrid Electrochemical/Electrochromic Cu(II) Ion Sensor Prototype Based on PANI/ITO-Electrode. Sens. Actuators B Chem. 2017, 248, 527–535. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavarinasab, A.; Abedini, M.; Tahmooressi, H.; Janfaza, S.; Tasnim, N.; Hoorfar, M. Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements. Polymers 2022, 14, 31. https://doi.org/10.3390/polym14010031
Yavarinasab A, Abedini M, Tahmooressi H, Janfaza S, Tasnim N, Hoorfar M. Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements. Polymers. 2022; 14(1):31. https://doi.org/10.3390/polym14010031
Chicago/Turabian StyleYavarinasab, Adel, Mostafa Abedini, Hamed Tahmooressi, Sajjad Janfaza, Nishat Tasnim, and Mina Hoorfar. 2022. "Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements" Polymers 14, no. 1: 31. https://doi.org/10.3390/polym14010031