Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantum Cascade Laser Based Spectroscopic Ellipsometry Setup
2.2. Polymer Thin Films and Multilayer Films
2.2.1. Polyethylene/Ethylene Vinyl Alcohol Multilayer Film
2.2.2. Biaxially Oriented Polyethylene Terephthalate Thin Film
3. Results
3.1. Investigation of a PE/EVOH/PE Multilayer Film
3.2. Bopet Thin Film Stretching
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Betts, T.A.; Tipple, C.A.; Sepaniak, M.J.; Datskos, P.G. Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films. Anal. Chim. Acta 2000, 422, 89–99. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, G.; Cha, J.J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5, 9187–9193. [Google Scholar] [CrossRef] [PubMed]
- Delimi, A.; Galopin, E.; Coffinier, Y.; Pisarek, M.; Boukherroub, R.; Talhi, B.; Szunerits, S. Investigation of the corrosion behavior of carbon steel coated with fluoropolymer thin films. Surf. Coat. Technol. 2011, 205, 4011–4017. [Google Scholar] [CrossRef]
- Chun, Y.G.; Kim, C.S.; Peck, D.H.; Shin, D.R. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sour. 1998, 71, 174–178. [Google Scholar] [CrossRef]
- Brack, H.P.; Scherer, G.G. Modification and characterization of thin polymer films for electrochemical applications. Macromol. Symp. 1998, 126, 25–49. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Yang, Y. Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency. J. Appl. Phys. 2000, 87, 4254–4263. [Google Scholar] [CrossRef]
- Dimitrov, S.D.; Schroeder, B.C.; Nielsen, C.B.; Bronstein, H.; Fei, Z.; McCulloch, I.; Heeney, M.; Durrant, J.R. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers 2016, 8, 14. [Google Scholar] [CrossRef]
- Harsanyi, G. Polymer Films in Sensor Applications: Technology, Materials, Devices and Their Characteristics; Technomic Pub. Co.: Lancaster, PA, USA, 1995. [Google Scholar]
- Schilinsky, P.; Waldauf, C.; Hauch, J.; Brabec, C.J. Polymer photovoltaic detectors: Progress and recent developments. Thin Solid Films 2004, 451–452, 105–108. [Google Scholar] [CrossRef]
- Saftics, A.; Agócs, E.; Fodor, B.; Patkó, D.; Petrik, P.; Kolari, K.; Aalto, T.; Fürjes, P.; Horvath, R.; Kurunczi, S. Investigation of thin polymer layers for biosensor applications. Appl. Surf. Sci. 2013, 281, 66–72. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, Y.; Kim, S.O.; Kim, H.S.; Kim, K.J.; Byun, D.; Choi, W. Conducting Polymer Coating on a High-Voltage Cathode Based on Soft Chemistry Approach toward Improving Battery Performance. ACS Appl. Mater. Interfaces 2018, 10, 29457–29466. [Google Scholar] [CrossRef]
- Ebner, A.; Zimmerleiter, R.; Cobet, C.; Hingerl, K.; Brandstetter, M.; Kilgus, J. Sub-second quantum cascade laser based infrared spectroscopic ellipsometry. Opt. Lett. 2019, 44, 3426–3429. [Google Scholar] [CrossRef]
- Wang, H.; Chu, P.K. Chapter 4—Surface Characterization of Biomaterials. In Characterization of Biomaterials; Bandyopadhyay, A., Bose, S., Eds.; Academic Press: Oxford, UK, 2013; pp. 105–174. [Google Scholar] [CrossRef]
- Losurdo, M.; Bergmair, M.; Bruno, G.; Cattelan, D.; Cobet, C.; de Martino, A.; Fleischer, K.; Dohcevic-Mitrovic, Z.; Esser, N.; Galliet, M.; et al. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J. Nanoparticle Res. 2009, 11, 1521–1554. [Google Scholar] [CrossRef] [Green Version]
- Ogieglo, W.; Wormeester, H.; Eichhorn, K.J.; Wessling, M.; Benes, N.E. In situ ellipsometry studies on swelling of thin polymer films: A review. Prog. Polym. Sci. 2015, 42, 42–78. [Google Scholar] [CrossRef]
- Pye, J.E.; Roth, C.B. Two Simultaneous Mechanisms Causing Glass Transition Temperature Reductions in High Molecular Weight Freestanding Polymer Films as Measured by Transmission Ellipsometry. Phys. Rev. Lett. 2011, 107, 235701. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Ogieglo, W.; van der Werf, H.; Tempelman, K.; Wormeester, H.; Wessling, M.; Nijmeijer, A.; Benes, N.E. n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry. J. Membr. Sci. 2013, 437, 313–323. [Google Scholar] [CrossRef]
- Wind, J.D.; Sirard, S.M.; Paul, D.R.; Green, P.F.; Johnston, K.P.; Koros, W.J. Carbon Dioxide-Induced Plasticization of Polyimide Membranes: Pseudo-Equilibrium Relationships of Diffusion, Sorption, and Swelling. Macromolecules 2003, 36, 6433–6441. [Google Scholar] [CrossRef]
- Baker, E.A.; Rittigstein, P.; Torkelson, J.M.; Roth, C.B. Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 2509–2519. [Google Scholar] [CrossRef]
- Hajduk, B.; Bednarski, H.; Trzebicka, B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J. Phys. Chem. B 2020, 124, 3229–3251. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Tiwald, T.; Bungay, C.; Hooper, A.E. Use of Molecular Vibrations to Analyze Very Thin Films with Infrared Ellipsometry. J. Phys. Chem. B 2004, 108, 3777–3780. [Google Scholar] [CrossRef]
- Hinrichs, K.; Röseler, A.; Gensch, M.; Korte, E. Structure analysis of organic films by mid-infrared ellipsometry. Thin Solid Films 2004, 455–456, 266–271. [Google Scholar] [CrossRef]
- Schubert, M.; Bundesmann, C.; Jakopic, G.; Maresch, H.; Arwin, H.; Persson, N.C.; Zhang, F.; Inganäs, O. Infrared ellipsometry characterization of conducting thin organic films. Thin Solid Films 2004, 455–456, 295–300. [Google Scholar] [CrossRef]
- Castilla-Casadiego, D.A.; Pinzon-Herrera, L.; Perez-Perez, M.; Quiñones-Colón, B.A.; Suleiman, D.; Almodovar, J. Simultaneous characterization of physical, chemical, and thermal properties of polymeric multilayers using infrared spectroscopic ellipsometry. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 155–168. [Google Scholar] [CrossRef]
- Lambrecht, A.; Pfeifer, M.; Konz, W.; Herbst, J.; Axtmann, F. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements. Analyst 2014, 139, 2070–2078. [Google Scholar] [CrossRef]
- Brandstetter, M.; Sumalowitsch, T.; Genner, A.; Posch, A.E.; Herwig, C.; Drolz, A.; Fuhrmann, V.; Perkmann, T.; Lendl, B. Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system. Analyst 2013, 138, 4022. [Google Scholar] [CrossRef]
- Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-Cascade Laser-Based Vibrational Circular Dichroism. J. Am. Chem. Soc. 2011, 133, 5704–5707. [Google Scholar] [CrossRef] [PubMed]
- Kilgus, J.; Langer, G.; Duswald, K.; Zimmerleiter, R.; Zorin, I.; Berer, T.; Brandstetter, M. Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser. Opt. Express 2018, 26, 30644–30654. [Google Scholar] [CrossRef]
- Zorin, I.; Kilgus, J.; Duswald, K.; Lendl, B.; Heise, B.; Brandstetter, M. Sensitivity-Enhanced Fourier Transform Mid-Infrared Spectroscopy Using a Supercontinuum Laser Source. Appl. Spectrosc. 2020, 74, 485–493. [Google Scholar] [CrossRef]
- Zorin, I.; Su, R.; Heise, B.; Lendl, B.; Brandstetter, M. Correlative infrared optical coherence tomography and hyperspectral chemical imaging. J. Opt. Soc. Am. A 2020, 37, B19–B26. [Google Scholar] [CrossRef]
- Furchner, A.; Kratz, C.; Gkogkou, D.; Ketelsen, H.; Hinrichs, K. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films. Appl. Surf. Sci. 2017, 421, 440–445. [Google Scholar] [CrossRef]
- Furchner, A.; Kratz, C.; Hinrichs, K. Sub-second infrared broadband-laser single-shot phase–amplitude polarimetry of thin films. Opt. Lett. 2019, 44, 4387–4390. [Google Scholar] [CrossRef] [PubMed]
- Zimmerleiter, R.; Nikzad-Langerodi, R.; Ruckebusch, C.; Godejohann, M.; Kilgus, J.; Duswald, K.; Brandstetter, M. QCL-based mid-infrared hyperspectral imaging of multilayer polymer oxygen barrier-films. Polym. Test. 2021, 98, 107190. [Google Scholar] [CrossRef]
- Berer, T.; Brandstetter, M.; Hochreiner, A.; Langer, G.; Märzinger, W.; Burgholzer, P.; Lendl, B. Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser. Opt. Lett. 2015, 40, 3476–3479. [Google Scholar] [CrossRef] [PubMed]
- Schwaighofer, A.; Brandstetter, M.; Lendl, B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem. Soc. Rev. 2017, 46, 5903–5924. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.; Wysocki, G. External-cavity quantum cascade lasers with fast wavelength scanning. Appl. Phys. B 2010, 100, 243–251. [Google Scholar] [CrossRef]
- Acher, O.; Bigan, E.; Drévillon, B. Improvements of phase–modulated ellipsometry. Rev. Sci. Instrum. 1989, 60, 65–77. [Google Scholar] [CrossRef]
- Mokwena, K.K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. [Google Scholar] [CrossRef]
- Lagaron, J.M.; Catalá, R.; Gavara, R. Structural characteristics defining high barrier properties in polymeric materials. Mater. Sci. Technol. 2004, 20, 1–7. [Google Scholar] [CrossRef]
- Demeuse, M.T. (Ed.) Biaxial Stretching of Film: Principles and Applications; Woodhead Publishing in Materials: Oxford, UK; Woodhead Publishing: Philadelphia, PA, USA,, 2011; OCLC: ocn666239797. [Google Scholar]
- Perkins, W. Effect of molecular weight and annealing temperature on the oxygen barrier properties of oriented PET film. Polym. Bull. 1988, 19, 397–401. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Czigány, T. On the essential and non-essential work of fracture of biaxial-oriented filled PET film. Polymer 1996, 37, 2433–2438. [Google Scholar] [CrossRef]
- Azzam, R.M.; Bashara, N.M. Ellipsometry and Polarized Light, 5th ed.; North-Holland Personal Library, North-Holland: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Krimm, S.; Liang, C.Y.; Sutherland, G.B.B.M. Infrared spectra of high polymers. V. Polyvinyl alcohol. J. Polym. Sci. 1956, 22, 227–247. [Google Scholar] [CrossRef]
- Krimm, S.; Liang, C.Y.; Sutherland, G.B.B.M. Infrared Spectra of High Polymers. II. Polyethylene. J. Chem. Phys. 1956, 25, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, J.W. Infrared refractive index of polyethylene and a polyethylene-based material. Opt. Eng. 2011, 50, 1–5. [Google Scholar] [CrossRef]
- Liang, C.; Krimm, S. Infrared spectra of high polymers: Part IX. Polyethylene terephthalate. J. Mol. Spectrosc. 1959, 3, 554–574. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebner, A.; Zimmerleiter, R.; Hingerl, K.; Brandstetter, M. Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing. Polymers 2022, 14, 7. https://doi.org/10.3390/polym14010007
Ebner A, Zimmerleiter R, Hingerl K, Brandstetter M. Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing. Polymers. 2022; 14(1):7. https://doi.org/10.3390/polym14010007
Chicago/Turabian StyleEbner, Alexander, Robert Zimmerleiter, Kurt Hingerl, and Markus Brandstetter. 2022. "Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing" Polymers 14, no. 1: 7. https://doi.org/10.3390/polym14010007
APA StyleEbner, A., Zimmerleiter, R., Hingerl, K., & Brandstetter, M. (2022). Towards Real-Time In-Situ Mid-Infrared Spectroscopic Ellipsometry in Polymer Processing. Polymers, 14(1), 7. https://doi.org/10.3390/polym14010007