Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. Thermoplastic Vulcanizate Composite and Bipolar Plate Preparation
2.3. Characterizations
2.3.1. Thermal Property Testing
2.3.2. Mechanical Testing
2.3.3. Electrical Conductivity Testing
2.3.4. Morphology Testing
2.3.5. Corrosion Testing
2.3.6. Electrolyte Preparation Performance Testing
3. Results and Discussion
3.1. Determination of Actual Synthetic Graphite Contents and Thermal Stabilty of the Composites by Thermogravimetric Analysis
3.2. Effect of Structural Composite Design on the Electrical Conductivity of the Bipolar Plates
3.3. The Relation between VRFB Operating Temperature and the Thermal Expansion of BPs
3.4. Effect of Structural Composite Design on Mechanical Properties of the Bipolar Plates
3.5. Chemical Resistance as a Function of Time
3.6. The Observation of Bipolar Plate Degradation
3.7. The Possibility of Using Laminated for VRFB Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caglar, B.; Fischer, P.; Kauranen, P.; Karttunen, M.; Elsner, P. Development of Carbon Nanotube and Graphite Filled Polyphenylene Sulfide Based Bipolar Plates for All-Vanadium Redox Flow Batteries. J. Power Sources 2014, 256, 88–95. [Google Scholar] [CrossRef]
- Hickmann, T.; Adamek, T.; Zielinski, O.; Derieth, T. Key Components in the Redox-Flow Battery: Bipolar Plates and Gaskets—Different Materials and Processing Methods for Their Usage. In Energy Storage Battery Systems; IntechOpen: London, UK, 2021; Volume 20. [Google Scholar] [CrossRef]
- Duan, Z.; Qu, Z.; Ren, Q.; Zhang, J. Review of Bipolar Plate in Redox Flow Batteries: Materials, Structures, and Manufacturing; Springer: Singapore, 2021; ISBN 4191802100. [Google Scholar]
- Zeng, Y.; Li, F.; Lu, F.; Zhou, X.; Yuan, Y.; Cao, X.; Xiang, B. A Hierarchical Interdigitated Flow Field Design for Scale-up of High-Performance Redox Flow Batteries. Appl. Energy 2019, 238, 435–441. [Google Scholar] [CrossRef]
- Huang, Z.; Mu, A.; Wu, L.; Wang, H. Vanadium Redox Flow Batteries: Flow Field Design and Flow Rate Optimization. J. Energy Storage 2022, 45, 103526. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, T.S.; Leung, P.K. Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries. Appl. Energy 2013, 105, 47–56. [Google Scholar] [CrossRef]
- Wei, Z.; Bhattarai, A.; Zou, C.; Meng, S.; Lim, T.M.; Skyllas-Kazacos, M. Real-Time Monitoring of Capacity Loss for Vanadium Redox Flow Battery. J. Power Sources 2018, 390, 261–269. [Google Scholar] [CrossRef]
- Kumar, S.; Jayanti, S. Effect of Electrode Intrusion on Pressure Drop and Electrochemical Performance of an All-Vanadium Redox Flow Battery. J. Power Sources 2017, 360, 548–558. [Google Scholar] [CrossRef]
- Loktionov, P.; Kartashova, N.; Konev, D.; Abunaeva, L.; Antipov, A.; Ruban, E.; Terent’ev, A.; Gvozdik, N.; Lyange, M.; Usenko, A.; et al. Fluoropolymer Impregnated Graphite Foil as a Bipolar Plates of Vanadium Flow Battery. Int. J. Energy Res. 2021, 1–10. [Google Scholar] [CrossRef]
- Gautam, R.K.; Kumar, A. A Review of Bipolar Plate Materials and Flow Field Designs in the All-Vanadium Redox Flow Battery. J. Energy Storage 2022, 48, 104003. [Google Scholar] [CrossRef]
- Huang, Z.; Mu, A. Flow Field Design and Performance Analysis of Vanadium Redox Flow Battery. Ionics 2021, 27, 5207–5218. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Zhang, J. Redox Flow Batteries Fundamentals and Applications; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2018; ISBN 978-1-4987-5394-4. [Google Scholar]
- Liao, W.; Jiang, F.; Zhang, Y.; Zhou, X.; He, Z. Highly-Conductive Composite Bipolar Plate Based on Ternary Carbon Materials and Its Performance in Redox Flow Batteries. Renew. Energy 2020, 152, 1310–1316. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, Y.; Narejo, G.M.; Jung, M.; Kim, K.J.; Kim, Y.J. Flexible Graphite Bipolar Plates for Vanadium Redox Flow Batteries. Int. J. Energy Res. 2021, 45, 11098–11108. [Google Scholar] [CrossRef]
- Lee, D.; Lim, J.W.; Nam, S.; Choi, I.; Lee, D.G. Method for Exposing Carbon Fibers on Composite Bipolar Plates. Compos. Struct. 2015, 134, 1–9. [Google Scholar] [CrossRef]
- Park, M.; Jung, Y.J.; Ryu, J.; Cho, J. Material Selection and Optimization for Highly Stable Composite Bipolar Plates in Vanadium Redox Flow Batteries. J. Mater. Chem. A 2014, 2, 15808–15815. [Google Scholar] [CrossRef]
- Minke, C.; Hickmann, T.; Dos Santos, A.R.; Kunz, U.; Turek, T. Cost and Performance Prospects for Composite Bipolar Plates in Fuel Cells and Redox Flow Batteries. J. Power Sources 2016, 305, 182–190. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Yu, L. Preparation and Surface Modification of PVDF-Carbon Felt Composite Bipolar Plates for Vanadium Flow Battery. J. Energy Chem. 2018, 27, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhou, Y.; Wang, S.; Lin, Y.; Huang, T.; Yu, A. A Novel Bipolar Plate Design for Vanadium Redox Flow Battery Application. Int. J. Electrochem. Sci. 2017, 12, 7031–7038. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, B.G.; Lee, D.G. Development of Carbon Composite Bipolar Plate (BP) for Vanadium Redox Flow Battery (VRFB). Compos. Struct. 2014, 109, 253–259. [Google Scholar] [CrossRef]
- Nam, S.; Lee, D.; Lee, D.G.; Kim, J. Nano Carbon/Fluoroelastomer Composite Bipolar Plate for a Vanadium Redox Flow Battery (VRFB). Compos. Struct. 2017, 159, 220–227. [Google Scholar] [CrossRef]
- Lim, J.W.; Lee, D.G. Carbon Fiber/Polyethylene Bipolar Plate-Carbon Felt Electrode Assembly for Vanadium Redox Flow Batteries (VRFB). Compos. Struct. 2015, 134, 483–492. [Google Scholar] [CrossRef]
- Choe, J.; Lim, J.W.; Kim, M.; Kim, J.; Lee, D.G. Durability of Graphite Coated Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries. Compos. Struct. 2015, 134, 106–113. [Google Scholar] [CrossRef]
- Lim, J.W.; Kim, M.; Lee, D.G. Conductive Particles Embedded Carbon Composite Bipolar Plates for Proton Exchange Membrane Fuel Cells. Compos. Struct. 2014, 108, 757–766. [Google Scholar] [CrossRef]
- Ma, L.; Hu, J.; Dou, R. Multiwalled Carbon Nanotubes Filled Thermoplastic Vulcanizate Dielectric Elastomer with Excellent Resilience Properties via Inhibiting MWCNT Network Formation. J. Appl. Polym. Sci. 2021, 138, 50129. [Google Scholar] [CrossRef]
- Bhattacharya, A.B.; Raju, A.T.; Chatterjee, T.; Naskar, K. Development and Characterizations of Ultra-High Molecular Weight EPDM/PP Based TPV Nanocomposites for Automotive Applications. Polym. Compos. 2020, 41, 4950–4962. [Google Scholar] [CrossRef]
- Carneiro, O.S.; Covas, J.A.; Reis, R.; Brulé, B.; Flat, J.J. The Effect of Processing Conditions on the Characteristics of Electrically Conductive Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2012, 25, 607–629. [Google Scholar] [CrossRef]
- Li, C.Q.; Zha, J.W.; Li, Z.J.; Zhang, D.L.; Wang, S.J.; Dang, Z.M. Towards Balanced Mechanical and Electrical Properties of Thermoplastic Vulcanizates Composites via Unique Synergistic Effects of Single-Walled Carbon Nanotubes and Graphene. Compos. Sci. Technol. 2018, 157, 134–143. [Google Scholar] [CrossRef]
- Ma, L.F.; Bao, R.Y.; Dou, R.; Liu, Z.Y.; Yang, W.; Xie, B.H.; Yang, M.B.; Fu, Q. A High-Performance Temperature Sensitive TPV/CB Elastomeric Composite with Balanced Electrical and Mechanical Properties via PF-Induced Dynamic Vulcanization. J. Mater. Chem. A 2014, 2, 16989–16996. [Google Scholar] [CrossRef]
- Haghnegahdar, M.; Naderi, G.; Ghoreishy, M.H.R. Electrical and Thermal Properties of a Thermoplastic Elastomer Nanocomposite Based on Polypropylene/Ethylene Propylene Diene Monomer/Graphene. Soft Mater. 2017, 15, 82–94. [Google Scholar] [CrossRef]
- Avasarala, B.; Haldar, P. Effect of Surface Roughness of Composite Bipolar Plates on the Contact Resistance of a Proton Exchange Membrane Fuel Cell. J. Power Sources 2009, 188, 225–229. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.C.; Park, S.J.; Jin, F.L. Fracture Toughness Improvement of Epoxy Resins with Short Carbon Fibers. J. Ind. Eng. Chem. 2014, 20, 1220–1222. [Google Scholar] [CrossRef]
- Witpathomwong, S.; Okhawilai, M.; Jubsilp, C.; Karagiannidis, P.; Rimdusit, S. Highly Filled Graphite/Graphene/Carbon Nanotube in Polybenzoxazine Composites for Bipolar Plate in PEMFC. Int. J. Hydrogen Energy 2020, 45, 30898–30910. [Google Scholar] [CrossRef]
- Onyu, K.; Yeetsorn, R.; Fowler, M.; Yu, A.; Seok Jun, Y.; Prapainaina, C.; Prissanaroon-Ouajai, W. Evaluation of the Possibility for Using Polypropylene/Graphene Composite as Bipolar Plate Material Instead of Polypropylene/Graphite Composite. Appl. Sci. Eng. Prog. 2016, 9, 1–13. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Ouajai, W.P.; Onyu, K. Studies on Surface Modification of Polypropylene Composite Bipolar Plates Using an Electroless Deposition Technique. RSC Adv. 2020, 10, 24330–24342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, T.; Xia, L.; Yuan, C.; Zhang, W.; Zhang, A. Polypropylene Elastomer Composite for the All-Vanadium Redox Flow Battery: Current Collector Materials. J. Mater. Chem. A 2015, 3, 2387–2398. [Google Scholar] [CrossRef]
- Liu, S.; Kok, M.; Kim, Y.; Barton, J.L.; Brushett, F.R.; Gostick, J. Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes. J. Electrochem. Soc. 2017, 164, A2038–A2048. [Google Scholar] [CrossRef] [Green Version]
- Petrach, E.; Abu-Isa, I.; Wang, X. Investigation of Elastomer Graphite Composite Material for Proton Exchange Membrane Fuel Cell Bipolar Plate. J. Fuel Cell Sci. Technol. 2009, 6, 031005. [Google Scholar] [CrossRef]
- Wu, D.; Gao, X.; Sun, J.; Wu, D.; Liu, Y.; Kormakov, S.; Zheng, X.; Wu, L.; Huang, Y.; Guo, Z. Spatial Confining Forced Network Assembly for Preparation of High-Performance Conductive Polymeric Composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 88–95. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Fowler, M. Resistance Measurement of Conductive Thermoplastic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. Appl. Sci. Eng. Prog. 2014, 7, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, A.; Asghari, S.; Alinoori, A.H.; Koosha, M.; Vuorinen, E. Effects of Coating Thickness on Corrosion and Contact Resistance Behavior of TiN Coated AISI 316L as Bipolar Plates for PEMFC. Iran. J. Hydrogen Fuel Cell 2017, 3, 137–149. [Google Scholar] [CrossRef]
- Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H.Y.; Yang, J.H.; Kim, H.T. A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries. Renew. Sustain. Energy Rev. 2017, 69, 263–274. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, L.; Wu, L.; Liu, L.; Qiu, X.; Xi, J. Broad Temperature Adaptability of Vanadium Redox Flow Battery—Part 1: Electrolyte Research. Electrochim. Acta 2016, 187, 525–534. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Li, L.; Graff, G.; Liu, J.; Zhang, H.; Yang, Z.; Hu, J.Z. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries. J. Power Sources 2011, 196, 3669–3672. [Google Scholar] [CrossRef]
- Masand, A.; Borah, M.; Pathak, A.K.; Dhakate, S.R. Effect of Filler Content on the Properties of Expanded-Graphitebased Composite Bipolar Plates for Application in Polymer Electrolyte Membrane Fuel Cells. Mater. Res. Express 2017, 4, 095604. [Google Scholar] [CrossRef]
- Chen, H.; Xia, X.H.; Yang, L.; He, Y.D.; Liu, H.B. Preparation and Characterization of Graphite/Resin Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. Sci. Eng. Compos. Mater. 2016, 23, 21–28. [Google Scholar] [CrossRef]
- Topcu, A.; Daricik, F. A Review on Composite Materials Usage in Bipolar Plates of Proton Exchange Membrane Fuel Cells (PEMFCs). In Proceedings of the 3rd International Congress on Vocational and Technical Sciences, Gaziantep, Turkey, 20 July 2018. [Google Scholar]
- Tulatorn, V.; Ouajai, S.; Yeetsorn, R.; Chanunpanich, N. Mechanical Behavior Investigation of UHMWPE Composites for Pile Cushion Applications. Appl. Sci. Eng. Prog. 2015, 8, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Satola, B.; Komsiyska, L.; Wittstock, G. Corrosion of Graphite-Polypropylene Current Collectors during Overcharging in Negative and Positive Vanadium Redox Flow Battery Half-Cell Electrolytes. J. Electrochem. Soc. 2018, 165, A963–A969. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Xu, Q.; Yan, C. Corrosion Behavior of a Bipolar Plate of Carbon–Polythene Composite in a Vanadium Redox Flow Battery. RSC Adv. 2015, 5, 5928–5932. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Socha, R.P.; Gurgul, J.; Wisniewski, M. XPS and NMR Studies of Phosphoric Acid Activated Carbons. Carbon 2008, 46, 2113–2123. [Google Scholar] [CrossRef]
- Choo, H.S.; Kinumoto, T.; Nose, M.; Miyazaki, K.; Abe, T.; Ogumi, Z. Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite during Potential Cycling in Sulfuric Acid Solution. J. Power Sources 2008, 185, 740–746. [Google Scholar] [CrossRef]
Specification | Values |
---|---|
Single cell dimension (width × length × height) | 126 mm × 126 mm × 67 mm |
Active area | 30 mm × 30 mm |
Temperature range during operation | 23–30 °C |
Voltage range | 1.2 V–1.6 V |
Cell current density | 40–100 mA/cm2 |
Maximum current | 4.9 A |
Compression pressure | 87 PSI (0.6 MPa), Force is recommended at 116 PSI (0.8 MPa) max. |
Samples | Decomposition Temperatures (°C) | Residual Mass at 600 °C (%) | Actual Graphite Content (%) | ||
---|---|---|---|---|---|
Ti | Tm | Tf | |||
TPV | 258.86 | 420.00 | 480.00 | 9.15 | 0.00 |
TPV/G 40 wt.% | 260.33 | 402.50 | 472.50 | 45.54 | 40.05 |
TPV/G 60 wt.% | 272.83 | 377.50 | 470.00 | 62.65 | 58.99 |
Samples | Magnification | |
---|---|---|
10× | 20× | |
Unpolished surface with sandpaper | ||
Polished surface, with 600-grit sandpaper |
Samples | Average | |
---|---|---|
Current (mA) | Energy (mWh) | |
Laminated BP | 64.31 | 260.157 |
Commercial graphite BP | 47.97 | 223.781 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyu, K.; Yeetsorn, R.; Gostick, J. Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery. Polymers 2022, 14, 2143. https://doi.org/10.3390/polym14112143
Onyu K, Yeetsorn R, Gostick J. Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery. Polymers. 2022; 14(11):2143. https://doi.org/10.3390/polym14112143
Chicago/Turabian StyleOnyu, Kannika, Rungsima Yeetsorn, and Jeff Gostick. 2022. "Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery" Polymers 14, no. 11: 2143. https://doi.org/10.3390/polym14112143
APA StyleOnyu, K., Yeetsorn, R., & Gostick, J. (2022). Fabrication of Bipolar Plates from Thermoplastic Elastomer Composites for Vanadium Redox Flow Battery. Polymers, 14(11), 2143. https://doi.org/10.3390/polym14112143