Size Prediction and Electrical Performance of Knitted Strain Sensors
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Preparation of Knitted Strain Sensors
2.3. Characterization and Measurements
2.3.1. Size-Change Test
2.3.2. Electrical Performance Test
3. Results and Discussions
3.1. Relationship between Knitting Factors and Sensor Size
3.1.1. The Effect of Knitting Factors on Sensors’ Horizontal Size
3.1.2. The Effect of Knitting Factors on Sensors’ Vertical Size
3.1.3. Size Prediction Model of the Sensors
3.2. Electrical Performance of the Knitted Strain Sensor
3.3. Application of the Size Prediction Model
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.W.; Yu, J.T.; Xiao, Y.; Zhu, Y.Y.; Zhang, W.L. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface. ACS Appl. Mater. Interfaces 2019, 11, 20500–20508. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.Q.; Zhang, K.N.; Tian, H.; Liu, Y.; Wang, D.Y.; Chen, Y.Q.; Yang, Y.; Ren, T.L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Liu, H.; Zheng, Y.J.; Zhai, Y.; Liu, X.H.; Liu, C.T.; Mi, L.W.; Guo, Z.H.; Shen, C.Y. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 42594–42606. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.W.; Hong, S.Y.; Lee, G.; Lee, H.; Song, C.; Keum, K.; Jeong, Y.R.; Jin, S.W.; Kim, D.S.; et al. Dynamically Stretchable Supercapacitor for Powering an Integrated Biosensor in All-in-One Textile System. ACS Nano 2019, 13, 10469–10480. [Google Scholar] [CrossRef]
- Zhang, F.J.; Zang, Y.P.; Huang, D.Z.; Di, C.A.; Zhu, D.B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015, 6, 8356. [Google Scholar] [CrossRef]
- Chen, H.T.; Song, Y.; Guo, H.; Miao, L.M.; Chen, X.X.; Su, Z.M.; Zhang, H.X. Hybrid Porous Micro Structured Finger Skin Inspired Self-Powered Electronic Skin System for Pressure Sensing and Sliding Detection. Nano Energy 2018, 51, 496–503. [Google Scholar] [CrossRef]
- Li, Y.T.; Miao, X.H.; Niu, L.; Jiang, G.M.; Ma, P.B. Human motion recognition of knitted flexible sensor in walking cycle. Sensors 2019, 20, 35. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Miao, X.H.; Chen, J.Y.; Jiang, G.M.; Liu, Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater. Design 2021, 197, 109273. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, M.C.; Xia, K.L.; Gong, X.Q.; Wang, H.M.; Yin, Z.; Guan, B.L.; Zhang, Y.Y. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 13331–13338. [Google Scholar] [CrossRef]
- Ali, A.; Baheti, V.; Militky, J.; Khan, Z. Utility of silver-coated fabrics as electrodes in electrotherapy application. J. Appl. Polym. Sci. 2018, 135, 46357. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, Y.N.; Su, M.; Li, W.B.; Li, Y.F.; Li, H.Z.; Qian, X.; Zhang, X.Y.; Li, F.Y.; Song, Y.L. Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv. Electron. Mater. 2017, 3, 1700253. [Google Scholar] [CrossRef]
- Han, X.X.; Miao, X.H.; Chen, X.; Jiang, G.M.; Niu, L. Research on finger movement sensing performance of conductive gloves. J. Eng. Fiber. Fabr. 2019, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Glasper, M.J.; Li, X.D.; Nychka, J.A.; Batcheller, J.; Chung, H.J.; Chen, Y. Preparation of fabric strain sensor based on graphene for human motion monitoring. J. Mater. Sci. 2018, 53, 9026–9033. [Google Scholar] [CrossRef]
- Miankafshe, M.A.; Bashir, T.; Persson, N.K. Electrostatic grafting of graphene onto polyamide 6, 6 yarns for use as conductive elements in smart textile applications. New J. Chem. 2020, 44, 7591–7601. [Google Scholar] [CrossRef]
- Sun, L.F.; Wang, F.; Jiang, J.J.; Liu, H.C.; Du, B.L.; Li, M.Z.; Liu, Y.X.; Li, M.H. A wearable fabric strain sensor assemblied by graphene with dual sensing performance approach to practice application assisted by wireless Bluetooth. Cellulose 2020, 27, 8923–8935. [Google Scholar] [CrossRef]
- Chen, X.D.; Li, B.T.; Qiao, Y.; Lu, Z.S. Preparing polypyrrole-coated stretchable textile via low-temperature interfacial polymerization for highly sensitive strain sensor. Micromachines 2019, 10, 788. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.D.; Xu, B.; Cai, Z.S. Polypyrrole coated knitted fabric for robust wearable sensor and heater. J. Mater. Sci-Mater. El. 2018, 29, 9218–9226. [Google Scholar] [CrossRef]
- Åkerfeldt, M.; Lund, A.; Walkenström, P. Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT: PSS. Text. Res. J. 2015, 85, 1789–1799. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire—elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Gurarslan, A.; Özdemir, B.; Bayat, İ.H.; Yelten, M.B.; Kurt, G.K. Silver-nanowire coated knitted wool fabrics for wearable electronic applications. J. Eng. Fiber. Fabr. 2019, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Soltanian, S.; Servati, P.; Ko, F.; Weng, M. A knitted wearable flexible sensor for monitoring breathing condition. J. Eng. Fiber. Fabr. 2020, 15, 1–13. [Google Scholar] [CrossRef]
- Dawit, H.W.; Zhang, Q.; Li, Y.M.; Islam, S.R.; Mao, J.F.; Wang, L. Design of Electro-Thermal Glove with Sensor Function for Raynaud’s Phenomenon Patients. Materials 2021, 14, 377. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Lee, S.; Choi, Y.; Han, S.; Won, H.; Sung, T.H.; Choi, Y.; Bae, J. Design framework for a seamless smart glove using a digital knitting system. Fash. Text. 2021, 8, 6. [Google Scholar]
- Ma, J.H.; Wang, P.; Chen, H.Y.; Bao, S.J.; Chen, W.; Lu, H.B. Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS Appl. Mater. Interfaces 2019, 11, 8527–8536. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.M.; Zhang, S.D.; Yin, R.; Liu, X.H.; He, Y.X.; Dai, K.; Shan, C.X.; Guo, J.; Liu, C.T.; et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 2018, 6, 12121–12141. [Google Scholar] [CrossRef]
- Atalay, O.; Kennon, W.R. Knitted strain sensors: Impact of design parameters on sensing properties. Sensors 2014, 14, 4712–4730. [Google Scholar] [CrossRef]
- Raji, R.K.; Miao, X.H.; Zhang, S.; Li, Y.T.; Wan, A.L. Influence of rib structure and elastic yarn type variations on textile piezoresistive strain sensor characteristics. Fibres Text. East. Eur. 2018, 26, 24–31. [Google Scholar] [CrossRef]
- Han, X.X.; Miao, X.H.; Chen, X.; Niu, L.; Wan, A.L. Effect of Elasticity on Electrical Properties of Weft-Knitted Conductive Fabrics. Fibres Text. East. Eur. 2021, 29, 47–52. [Google Scholar] [CrossRef]
- Frydrysiak, M.; Zięba, J. Textronic sensor for monitoring respiratory rhythm. Fibres Text. East. Eur. 2012, 20, 74–78. [Google Scholar]
- Wang, J.F.; Long, H.U. Research on wearable sensors based on knitted fabrics with silver plating fiber. Adv. Mat. Res. 2011, 331, 36–39. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Long, H.R. Resistive network model of the weft-knitted strain sensor with the plating stitch-Part 1: Resistive network model under static relaxation. J. Eng. Fiber. Fabr. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Liu, S.; Yang, C.X.; Zhao, Y.F.; Tao, X.M.; Tong, J.H.; Li, L. The impact of float stitches on the resistance of conductive knitted structures. Text. Res. J. 2016, 86, 1455–1473. [Google Scholar] [CrossRef]
- Tokarska, M.; Orpel, M. Study of anisotropic electrical resistance of knitted fabrics. Text. Res. J. 2019, 89, 1073–1083. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.P.; Li, L. The impact of different proportions of knitting elements on the resistive properties of conductive fabrics. Text. Res. J. 2019, 89, 881–890. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Ding, F.; Hua, T.; Au, W.M.; Wong, K.S. Electromechanical analysis of length-related resistance and contact resistance of conductive knitted fabrics. Text. Res. J. 2012, 82, 2062–2070. [Google Scholar] [CrossRef]
- Liu, H.S.; Jiang, G.M.; Dong, Z.J.; Xia, F.L.; Cong, H.L. The size prediction and auto-generation of garment template. Int. J. Cloth. Sci. Technol. 2020, 33, 74–92. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Zhong, J.; Ru, X.; Liu, B. Correlation of yarn feeding to the dimensional and elastic parameters of tubular knitted fabric. Text. Res. J. 2022, 92, 446–455. [Google Scholar] [CrossRef]
- Ulson, A.A.; Cabral, L.F.; Souza, S.M. Prediction of dimensional changes in circular knitted cotton fabrics. Text. Res. J. 2010, 80, 236–252. [Google Scholar] [CrossRef]
- Wicaksono, I.; Tucker, C.I.; Sun, T.; Guerrero, C.A.; Liu, C.; Woo, W.M.; Pence, E.J.; Dagdeviren, C. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flex. Electron. 2020, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.Y.; Cong, H.L.; Dong, Z.J. Highly stretchable and sensitive strain sensor based on Ti3C2-coated electrospinning TPU film for human motion detection. Smart Mater. Struct. 2021, 30, 095003. [Google Scholar] [CrossRef]
- Isaia, C.; McNally, D.S.; McMaster, S.A.; Branson, D.T. Effect of mechanical preconditioning on the electrical properties of knitted conductive textiles during cyclic loading. Text. Res. J. 2019, 89, 445–460. [Google Scholar] [CrossRef]
- Šafárová, V.; Malachová, K.; Militký, J. Electromechanical analysis of textile structures designed for wearable sensors. In Proceedings of the 16th International Conference on Mechatronics-Mechatronika, Brno, Czech Republic, 3–5 December 2014; pp. 416–422. [Google Scholar]
- Li, X.P.; Li, Y.; Li, X.F.; Song, D.K.; Min, P.; Hu, C.; Zhang, H.B.; Koratkar, N.; Yu, Z.Z. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interf. Sci. 2019, 542, 54–62. [Google Scholar] [CrossRef] [PubMed]
Fabric No. | Wales | Courses | Yarn Composition | Spandex Content (%) | ||
---|---|---|---|---|---|---|
Non-Conductive Area | Conductive Area | |||||
Plating Yarn | Ground Yarn | |||||
F1 | 30 | 10 | EN | SN | 20/50 NS | 28.5 |
F2 | 20/70 NS | 22.2 | ||||
F3 | 40/70 NS | 36.3 | ||||
F4 | 20 | 20/50 NS | 28.5 | |||
F5 | 20/70 NS | 22.2 | ||||
F6 | 40/70 NS | 36.3 | ||||
F7 | 30 | 20/50 NS | 28.5 | |||
F8 | 20/70 NS | 22.2 | ||||
F9 | 40/70 NS | 36.3 | ||||
F10 | 40 | 10 | 20/50 NS | 28.5 | ||
F11 | 20/70 NS | 22.2 | ||||
F12 | 40/70 NS | 36.3 | ||||
F13 | 20 | 20/50 NS | 28.5 | |||
F14 | 20/70 NS | 22.2 | ||||
F15 | 40/70 NS | 36.3 | ||||
F16 | 30 | 20/50 NS | 28.5 | |||
F17 | 20/70 NS | 22.2 | ||||
F18 | 40/70 NS | 36.3 | ||||
F19 | 50 | 10 | 20/50 NS | 28.5 | ||
F20 | 20/70 NS | 22.2 | ||||
F21 | 40/70 NS | 36.3 | ||||
F22 | 20 | 20/50 NS | 28.5 | |||
F23 | 20/70 NS | 22.2 | ||||
F24 | 40/70 NS | 36.3 | ||||
F25 | 30 | 20/50 NS | 28.5 | |||
F26 | 20/70 NS | 22.2 | ||||
F27 | 40/70 NS | 36.3 |
Knitting Parameters | Factors | The Size Shrinkage (%) | |
---|---|---|---|
Horizontal Direction | Vertical Direction | ||
Spandex content | S | 0.000 | 0.000 |
R | 0.987 | 0.936 | |
Wales | S | 0.000 | 0.038 |
R | 0.973 | 0.861 | |
Courses | S | 0.000 | 0.000 |
R | 0.978 | 0.877 |
Body Part | Horizontal Size/cm | Vertical Size/cm |
---|---|---|
① | 4.97 | 2.13 |
② | 6.52 | 4.25 |
③ | 3.16 | 1.92 |
④ | 1.85 | 1.98 |
Body Part | Predicted Size/cm | Finished Sizes/cm | Deviation Rate/% | ||||||
---|---|---|---|---|---|---|---|---|---|
Horizontal Direction | Vertical Direction | Horizontal Direction | Vertical Direction | Horizontal Direction | Vertical Direction | ||||
① | 59 | 40 | 0.36 | 4.78 | 1.97 | 4.85 | 2.05 | 1.44 | 3.90 |
② | 72 | 66 | 0.36 | 6.33 | 4.07 | 6.44 | 4.16 | 1.71 | 2.16 |
③ | 46 | 32 | 0.36 | 2.97 | 1.74 | 3.07 | 1.81 | 3.26 | 3.87 |
④ | 38 | 28 | 0.36 | 1.72 | 1.80 | 1.79 | 1.87 | 3.91 | 3.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Cong, H.; Dong, Z.; Jiang, G. Size Prediction and Electrical Performance of Knitted Strain Sensors. Polymers 2022, 14, 2354. https://doi.org/10.3390/polym14122354
Liang X, Cong H, Dong Z, Jiang G. Size Prediction and Electrical Performance of Knitted Strain Sensors. Polymers. 2022; 14(12):2354. https://doi.org/10.3390/polym14122354
Chicago/Turabian StyleLiang, Xinhua, Honglian Cong, Zhijia Dong, and Gaoming Jiang. 2022. "Size Prediction and Electrical Performance of Knitted Strain Sensors" Polymers 14, no. 12: 2354. https://doi.org/10.3390/polym14122354
APA StyleLiang, X., Cong, H., Dong, Z., & Jiang, G. (2022). Size Prediction and Electrical Performance of Knitted Strain Sensors. Polymers, 14(12), 2354. https://doi.org/10.3390/polym14122354