A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation
2.3.1. Representative Copolymerization Procedure
2.3.2. Thiol-Ene Click Reaction between mPEG-b-P(PA-alt-AGE) and RhB-SH
2.3.3. Preparation of Rhodamine-Functionalized Amphiphilic Copolymer Micelles
2.3.4. Cell Imaging
2.3.5. Cytotoxicity of Rhodamine-Functionalized Polymer Micelles
3. Results and Discussion
3.1. Synthesis of mPEG-b-P(PA-alt-AGE)
3.2. Postpolymerization Modification of mPEG-b-P(PA-alt-AGE) and Self-Assembly
3.3. pH-Sensing Properties of mPEG-b-P(PA-alt-AGERh) Micelles
3.4. Fluorescence Imaging and Lysosome Staining in Living Cells
3.5. Detection of Lysosomal pH Changes in Living Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turk, V.; Turk, B.; Turk, D. Lysosomal cysteine proteases: Facts and opportunities. EMBO J. 2001, 20, 4629–4633. [Google Scholar] [CrossRef] [PubMed]
- Luzio, J.P.; Pryor, P.R.; Bright, N.A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol. 2007, 8, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Lin, C.; Li, H.; Zhan, P.; Wang, J.; Cui, S.; Hu, M.; Cheng, G.; Peng, X. A ratiometric lysosomal pH chemosensor based on fluorescence resonance energy transfer. Dye. Pigment. 2013, 99, 620–626. [Google Scholar] [CrossRef]
- Lee, M.H.; Han, J.H.; Lee, J.H.; Park, N.; Kumar, R.; Kang, C.; Kim, J.S. Two-color probe to monitor a wide range of pH values in cells. Angew. Chem. Int. Ed. Engl. 2013, 52, 6206–6209. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, I.; Joosten, M.; Roberg, K.; Ollinger, K. The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis. Exp. Cell Res. 2013, 319, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, A.P.; Puertollano, R.; Raben, N.; Slaugenhaupt, S.; Walkley, S.U.; Ballabio, A. Autophagy in lysosomal storage disorders. Autophagy 2012, 8, 719–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Jing, X.; Lin, W. Single-/Dual-Responsive pH Fluorescent Probes Based on the Hybridization of Unconventional Fluorescence and Fluorophore for Imaging Lysosomal pH Changes in HeLa Cells. Anal. Chem. 2019, 91, 15213–15219. [Google Scholar] [CrossRef] [PubMed]
- Singha, S.; Kim, D.; Seo, H.; Cho, S.W.; Ahn, K.H. Fluorescence sensing systems for gold and silver species. Chem. Soc. Rev. 2015, 44, 4367–4399. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 2014, 114, 590–659. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.Q.; Huo, Y.; Zhang, H.; Wang, L.; Zhang, P.; Song, D.; Shi, Y.; Guo, W. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J. Am. Chem. Soc. 2014, 136, 574–577. [Google Scholar] [CrossRef]
- Lv, H.; Yang, X.F.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine. Anal. Chem. 2014, 86, 1800–1807. [Google Scholar] [CrossRef]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Zhu, H.; Fan, J.; Xu, Q.; Li, H.; Wang, J.; Gao, P.; Peng, X. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem. Commun. 2012, 48, 11766. [Google Scholar] [CrossRef]
- Xue, Z.; Zhao, H.; Liu, J.; Han, J.; Han, S. Imaging lysosomal pH alteration in stressed cells with a sensitive ratiometric fluorescence sensor. ACS Sens. 2017, 2, 436–442. [Google Scholar] [CrossRef]
- Yin, L.; He, C.; Huang, C.; Zhu, W.; Wang, X.; Xu, Y.; Qian, X. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells. Chem. Commun. 2012, 48, 4486–4488. [Google Scholar] [CrossRef]
- Chen, J.; Tang, Y.; Wang, H.; Zhang, P.; Li, Y.; Jiang, J. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH. J. Colloid Interface Sci. 2016, 484, 298–307. [Google Scholar] [CrossRef]
- Yu, K.-K.; Li, K.; Hou, J.-T.; Yang, J.; Xie, Y.-M.; Yu, X.-Q. Rhodamine based pH-sensitive “intelligent” polymers as lysosome targeting probes and their imaging applications in vivo. Polym. Chem. 2014, 5, 5804. [Google Scholar] [CrossRef]
- Dong, Z.; Han, Q.; Mou, Z.; Li, G.; Liu, W. A reversible frequency upconversion probe for real-time intracellular lysosome-pH detection and subcellular imaging. J. Mater. Chem. B 2018, 6, 1322. [Google Scholar] [CrossRef]
- Stratton, S.G.; Taumoefolau, G.H.; Purnell, G.E.; Rasooly, M.; Czaplyski, W.L.; Harbron, E.J. Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects. Chem. Eur. J. 2017, 23, 14064–14072. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.C.; Cai, L.; Zhang, S.; Zhang, X. Cell-penetrating peptide spirolactam derivative as a reversible fluorescent pH probe for live cell imaging. Anal. Chem. 2017, 89, 1238–1243. [Google Scholar] [CrossRef]
- Lee, H.; Akers, W.; Bhushan, K.; Bloch, S.; Sudlow, G.; Tang, R.; Achilefu, S. Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug. Chem. 2011, 22, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Xiao, H.; Cheng, Y.; Zhang, W.; Huang, F.; Zhang, W.; Wang, H.; Tang, B. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chem. Commun. 2014, 50, 7184–7187. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, X.; Wang, S.; Li, S.; Li, Y.; Yang, G. A novel nanogel-based fluorescent probe for ratiometric detection of intracellular pH values. Chem. Commun. 2014, 50, 8787. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhao, Z.; Zhang, T.; Guo, X.; Wang, S.; Li, S.; Li, Y.; Yang, G. In vivo observation of the pH alternation in mitochondria for various external stimuli. Chem. Commun. 2015, 51, 17324. [Google Scholar] [CrossRef]
- Chen, S.; Jia, Y.; Zou, G.Y.; Yu, Y.L.; Wang, J.H. A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale 2019, 11, 6377. [Google Scholar] [CrossRef]
- Tantama, M.; Hung, Y.P.; Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc. 2011, 133, 10034–10037. [Google Scholar] [CrossRef] [Green Version]
- Ouadahi, K.; Sbargoud, K.; Allard, E.; Larpent, C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. Nanoscale 2012, 4, 727. [Google Scholar] [CrossRef]
- Thomas, S.W., III; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [CrossRef]
- Grazon, C.; Si, Y.; Placial, J.P.; Rieger, J.; Meallet-Renault, R.; Clavier, G. Core–shell polymeric nanoparticles comprising BODIPY and fluorescein as ultra-bright ratiometric fluorescent pH sensors. Photochem. Photobiol. Sci. 2019, 18, 1156–1165. [Google Scholar] [CrossRef]
- Hu, J.; Liu, S. Engineering responsive polymer building blocks with host–guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47, 2084–2095. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, G.; Ge, Z.; Liu, S. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Prog. Polym. Sci. 2014, 39, 1096–1143. [Google Scholar] [CrossRef]
- Trombetta, E.S.; Ebersold, M.; Garrett, W.; Pypaert, M.; Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 2003, 299, 1400–1403. [Google Scholar] [CrossRef]
- Sargazia, S.; Mukhtarb, M.; Rahdarc, A.; Bilald, M.; Baranie, M.; Díez-Pascualf, A.M.; Behzadmehrg, R.; Pandeyh, S. Opportunities and challenges of using high-sensitivity nanobiosensors to detect long noncoding RNAs: A preliminary review. Int. J. Biol. Macromol. 2022, 205, 304–315. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Luo, J.; Liu, X. Synthesis of an amphiphilic copolymer bearing rhodamine moieties and its self-assembly into micelles as chemosensors for Fe3+ in aqueous solution. React. Funct. Polym. 2012, 72, 169–175. [Google Scholar] [CrossRef]
- Ma, B.; Xu, M.; Zeng, F.; Huang, L.; Wu, S. Micelle nanoparticles for FRET-based ratiometric sensing of mercury ions in water, biological fluids and living cells. Nanotechnology 2011, 22, 065501. [Google Scholar] [CrossRef]
- Li, Z.; Song, Y.; Yang, Y.; Yang, L.; Huang, X.; Han, J.; Han, S. Rhodamine-deoxylactam functionalized poly [styrene-alter-(maleic acid)] s as lysosome activatable probes for intraoperative detection of tumors. Chem. Sci. 2012, 3, 2941. [Google Scholar] [CrossRef]
- Khoerunnisa, E.B.; Kang, Z.A.; Mazrad, I.; Lee, G.; In, I.; Park, S.Y. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 1064–1071. [Google Scholar] [CrossRef]
- Qi, Q.; Li, Y.; Yan, X.; Zhang, F.; Jiang, S.; Su, J.; Xu, B.; Fu, X.; Sun, L.; Tian, W. Intracellular pH sensing using polymeric micelle containing tetraphenylethylene-oxazolidine. Polym. Chem. 2016, 7, 5273. [Google Scholar] [CrossRef]
- Lin, Y.X.; Wang, Y.; Qiao, S.L.; An, H.W.; Zhang, R.X.; Qiao, Z.Y.; Rajapaksha, R.P.; Wang, L.; Wang, H. pH-sensitive polymeric nanoparticles modulate autophagic effect via lysosome impairment. Small 2016, 12, 2921–2931. [Google Scholar] [CrossRef]
- Panyam, J.; Sahoo, S.K.; Prabha, S.; Bargar, T.; Labhasetwar, V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (D, L-lactide-co-glycolide) nanoparticles. Int. J. Pharm. 2003, 262, 1–11. [Google Scholar] [CrossRef]
- Bou, S.; Klymchenko, A.S.; Collot, M. Fluorescent labeling of biocompatible block copolymers: Synthetic strategies and applications in bioimaging. Mater. Adv. 2021, 2, 3213–3233. [Google Scholar] [CrossRef]
- Vollrath, A.; Schubert, S.; Schubert, U.S. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles–a review. J. Mater. Chem. B 2013, 1, 1994–2007. [Google Scholar] [CrossRef]
- Robin, M.P.; O’Reilly, R.K. Strategies for preparing fluorescently labelled polymer nanoparticles. Polym. Int. 2014, 64, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Pappuru, S.; Chakraborty, D. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. Eur. Polym. J. 2019, 121, 109276. [Google Scholar] [CrossRef]
- Chen, C.-M.; Xu, X.; Ji, H.-Y.; Wang, B.; Pan, L.; Luo, Y.; Li, Y.-S. Alkali Metal Carboxylates: Simple and Versatile Initiators for Ring-Opening Alternating Copolymerization of Cyclic Anhydrides/Epoxides. Macromolecules 2021, 54, 713–724. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Zhang, G. Self-buffering organocatalysis tailoring alternating polyester. ACS Macro. Lett. 2017, 6, 1094–1098. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Liu, S.; Li, Z. Phosphazene/Lewis Acids as Highly Efficient Cooperative Catalyst for Synthesis of High-Molecular-Weight Polyesters by Ring-Opening Alternating Copolymerization of Epoxide and Anhydride. J. Polym. Sci. 2020, 58, 803–810. [Google Scholar] [CrossRef]
- Ji, H.-Y.; Song, D.-P.; Wang, B.; Pan, L.; Li, Y.-S. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chem. 2019, 21, 6123. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Luo, H.; Zhao, J. Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single-and two-component metal-free catalysts. Eur. Polym. J. 2020, 134, 109820. [Google Scholar] [CrossRef]
- Hu, L.-F.; Zhang, C.-J.; Wu, H.-L.; Yang, J.-L.; Liu, B.; Duan, H.-Y.; Zhang, X.-H. Highly active organic lewis pairs for the copolymerization of epoxides with cyclic anhydrides: Metal-free access to well-defined aliphatic polyesters. Macromolecules 2018, 51, 3126. [Google Scholar] [CrossRef]
- Hu, L.-F.; Zhang, C.-J.; Chen, D.-J.; Cao, X.-H.; Yang, J.-L.; Zhang, X.-H. Synthesis of high-molecular-weight maleic anhydride-based polyesters with enhanced properties. ACS Appl. Polym. Mater. 2020, 2, 5817–5823. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; He, P.; Yi, X.; Liu, X.; Xiao, C. A PEGylated alternating copolymeric prodrug of sulfur dioxide with glutathione responsiveness for Irinotecan delivery. J. Mater. Chem. B 2021, 9, 187–194. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Zhou, Q.; Wang, Y.; Song, H.; Yang, H. Metal-free Lewis pairs catalysed synthesis of fluorescently labelled polyester-based amphiphilic polymers for biological imaging. Eur. Polym. J. 2022, 166, 111033. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Liu, X.; Yang, H.; Zhang, H.; Xiao, C.; Chen, X. A PEGylated alternating copolymeric prodrug of sulfur dioxide with glutathione responsiveness for Irinotecan delivery. Biomater. Sci. 2019, 7, 3898–3905. [Google Scholar] [CrossRef]
- Kang, S.; Kim, S.; Yang, Y.-K.; Bae, S.; Tae, J. Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron. Lett. 2009, 50, 2010–2012. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Han, J.; Han, S. Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor. Analyst 2011, 136, 3698–3706. [Google Scholar] [CrossRef] [Green Version]
- Best, Q.A.; Xu, R.; McCarroll, M.E.; Wang, L.; Dyer, D.J. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH. Org. Lett. 2010, 12, 3219–3221. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, D.; Liu, Y.; Ding, P.; Ye, Y.; Zhao, Y. A novel colorimetric and off–on fluorescent Chemosensor for Cr3+ in aqueous solution and its application in live cell imaging. J. Fluoresc. 2014, 24, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, H.; Nomoto, E.; Ikoma, S. Reversible Formation of Iron(iii) Ion Clusters in the Poly(acry1ic acid)-Fe3+ Complex Gel with Changes in the Water Content. J. Mater. Chem. 1993, 3, 389–392. [Google Scholar] [CrossRef]
Entry | [PA]0/[AGE]0/[OH]0/ [t-BuP1]/[Et3B] b | Time (h) c | Tem. (°C) | Mn,NMR (kg*mol−1) d | Mn,SEC (kg*mol−1) e | ÐMe |
---|---|---|---|---|---|---|
1 | 20/20/1/0.2/0.4 | 12 | 90 | 6.4 | 6.3 | 1.62 |
2 | 20/20/1/0.2/0.4 | 24 | 90 | 7.9 | 7.1 | 1.58 |
3 | 20/20/1/0.2/0.4 | 48 | 60 | 8.6 | 9.4 | 1.35 |
4 | 20/20/1/0.2/0.4 | 48 | 45 | 7.4 | 5.5 | 1.43 |
5 | 20/20/1/0.2/0.4 | 48 | 90 | 9.2 | 10.6 | 1.28 |
6 | 20/20/1/0.1/0.4 | 48 | 90 | 9.1 | 9.1 | 1.39 |
7 | 20/20/1/0.4/0.4 | 48 | 90 | 9.3 | 8.4 | 1.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhou, Q.; Yang, H. A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers 2022, 14, 2420. https://doi.org/10.3390/polym14122420
Wang L, Zhou Q, Yang H. A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers. 2022; 14(12):2420. https://doi.org/10.3390/polym14122420
Chicago/Turabian StyleWang, Lijun, Qiang Zhou, and Haiyang Yang. 2022. "A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer" Polymers 14, no. 12: 2420. https://doi.org/10.3390/polym14122420
APA StyleWang, L., Zhou, Q., & Yang, H. (2022). A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers, 14(12), 2420. https://doi.org/10.3390/polym14122420