Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the PFGPA Membranes
2.3. SEM
2.4. IR Analysis
2.5. XPS
2.6. Liquid Uptake Capability and Swelling Ability
2.7. Chemical Stability
2.8. Ionic Exchange Capacity
2.9. Proton Conductivity
2.10. Mechanical Measurement
3. Results and Discussion
3.1. Preparation of the PFGPA Membranes
3.2. Characterization of the PFGPA Membranes
3.2.1. Morphologies
3.2.2. IR Analysis
3.2.3. XPS
3.3. Performances of the PFPGA Membranes
3.3.1. Liquid Uptake Capability and Area Swelling
3.3.2. Chemical Stability
3.3.3. Ion Exchange Capability and Conductivity
3.3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ke, X.; Zhang, Y.; Gohs, U.; Drache, M.; Beuermann, S. Polymer electrolyte membranes prepared by graft copolymerization of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid on PVDF and ETFE activated by electron beam treatment. Polymers 2019, 11, 1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojarrad, N.R.; Iskandarani, B.; Taşdemir, A.; Yürüm, A.; Gürsel, S.A.; Kaplan, B.Y. Nanofiber based hybrid sulfonated silica/P(VDF-TrFE) membranes for PEM fuel cells. Int. J. Hydrogen Energy 2021, 46, 13583–13593. [Google Scholar] [CrossRef]
- Vijayalekshmi, V.; Khastgir, D. Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silico tungstic acid nanocomposite membranes for fuel cell applications. Energy 2018, 142, 313–330. [Google Scholar]
- Heitner-Wirguin, C. Recent advances in perfluorinated ionomer membranes: Structure, properties and applications. J. Membr. Sci. 1996, 120, 1–33. [Google Scholar] [CrossRef]
- Ketpang, K.; Lee, K.; Shanmugam, S. Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl. Mater. Interfaces 2014, 6, 16734–16744. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K.; Rangarajan, R. Organic/inorganic hybrid membrane: Thermally stable cation-exchange membrane prepared by the sol–gel method. Macromolecules 2003, 37, 10023–10030. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612. [Google Scholar] [CrossRef]
- Oh, K.; Kwon, O.; Son, B.; Lee, D.H.; Shanmugam, S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. Membr. Sci. 2019, 583, 103–109. [Google Scholar] [CrossRef]
- Gubler, L.; Gürsel, S.A.; Scherer, G.G. Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 2005, 5, 317–335. [Google Scholar] [CrossRef]
- Chen, J.; Asano, M.; Maekawa, Y.; Sakamura, T.; Kubota, H.; Yoshida, M. Preparation of ETFE-based fuel cell membranes using UV-induced photografting and electron beam-induced crosslinking techniques. J. Membr. Sci. 2006, 283, 373–379. [Google Scholar] [CrossRef]
- Hasegawa, S.; Suzuki, Y.; Maekawa, Y. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique. Radiat. Phys. Chem. 2008, 77, 617–621. [Google Scholar] [CrossRef]
- Chen, J.; Asano, M.; Yamaki, T.; Yoshida, M. Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J. Membr. Sci. 2006, 269, 194–204. [Google Scholar] [CrossRef]
- Fu, R.Q.; Woo, J.J.; Seo, S.J.; Lee, J.S.; Moon, S.H. Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications. J. Membr. Sci. 2008, 309, 156–164. [Google Scholar] [CrossRef]
- Zhang, Z.; Jetsrisuparb, K.; Wokaun, A.; Gubler, L. Study of nitrile-containing proton exchange membranes prepared by radiation grafting: Performance and degradation in the polymer electrolyte fuel cell. J. Power Sources 2013, 243, 306–316. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Y.; Ma, J.; Qiu, J.; Peng, J.; Li, J.; Zhai, M. A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α-methylstyrene and N, N-dimethylaminoethyl methacrylate for vanadium redox flow battery application. J. Membr. Sci. 2012, 407–408, 184–192. [Google Scholar] [CrossRef]
- Qiu, X.; Li, W.; Zhang, S.; Liang, H.; Zhu, W. The Microstructure and character of the PVDF-g-PSSA membrane prepared by solution grafting. J. Electrochem. Soc. 2003, 150, 917–921. [Google Scholar] [CrossRef]
- Guo, G.B.; An, S.L.; Kou, S.S. Preparation and properties of modified poly(vinylidene fluoride) grafted with polystyrene sulfonated acid membrane. Polym. Mater. Sci. Eng. 2010, 26, 112–115. [Google Scholar]
- Hübner, G.; Roduner, E. EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 1999, 9, 409–418. [Google Scholar] [CrossRef]
- Dockheer, S.M.; Gubler, L.; Bounds, P.L.; Domazou, A.S.; Scherer, G.G.; Wokaun, A.; Koppenol, W.H. Damage to fuel cell membranes. Reaction of HO with an oligomer of poly(sodium styrene sulfonate) and subsequent reaction with O2. Phys. Chem. Chem. Phys. 2010, 12, 11609–11616. [Google Scholar] [CrossRef]
- Gursel, S.A.; Yang, Z.; Choudhury, B.; Roelofs, M.G.; Scherer, G.G. Radiation grafted membranes using a trifluorostyrene derivative. J. Electrochem. Soc. 2006, 10, A1964–A1970. [Google Scholar] [CrossRef]
- Hodgdon, R.B. Sulfonated Polymers of α, α, β-Trifluorostyrene, with Applications to Structures and Cells. U.S. Patent 3341366, 12 September 1967. [Google Scholar]
- Chen, J.; Asano, M.; Yamaki, T.; Yoshida, M. Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films. J. Mater. Sci. 2006, 41, 1289–1292. [Google Scholar] [CrossRef]
- Assink, R.A.; Arnold, C.; Hollandsworth, R.P. Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J. Membr. Sci. 1991, 56, 143–151. [Google Scholar] [CrossRef]
- Sharma, K.R. Thermal terpolymerization of alpha-methylstyrene, acrylonitrile and styrene. Polymer 2000, 41, 1305–1308. [Google Scholar] [CrossRef]
- Woo, J.J.; Seo, S.J.; Yun, S.H.; Fu, R.Q.; Yang, T.H.; Moon, S.H. Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with alpha-methylstyrene and acrylonitrile. J. Membr. Sci. 2010, 363, 80–86. [Google Scholar] [CrossRef]
- Li, J.; Muto, F.; Miura, T.; Oshima, A.; Washio, M.; Ikeda, S.; Katsumura, Y. Improving the properties of the proton exchange membranes by introducing alpha-methylstyrene in the pre-irradiation induced graft polymerization. Eur. Polym. J. 2006, 42, 1222–1228. [Google Scholar] [CrossRef]
- Gubler, L.; Slaski, M.; Wallasch, F.; Wokaun, A.; Scherer, G.G. Radiation grafted fuel cell membranes based on co-grafting of alpha-methylstyrene and methacrylonitrile into a fluoropolymer base film. J. Membr. Sci. 2009, 339, 68–77. [Google Scholar] [CrossRef]
- Guo, G.B.; An, S.L.; Kou, S.S. Preparation and performance of modified poly(vinylidene fluoride) grafted onto a blended polystyrene sulfonated acid membrane. Acta Phys.-Chim. Sin. 2009, 25, 2161–2166. [Google Scholar]
- Riberio, M.R.; Portela, M.F.; Deffieux, A.; Cramail, H.; Rocha, M.F. Isospecific homo and copolymerization of styrene with ethylene in the presence of VCl3, AlCl3 as catalyst. Macromol. Rapid Commun. 1996, 17, 461–469. [Google Scholar] [CrossRef]
- Deng, Y.; Peng, C.; Liu, P.; Lu, J.; Zeng, L. Studies on the cationic copolymerization of alpha-pinene and styrene with complex SbCl3/AlCl3 catalyst systems. 1. Effects of the polymerization conditions on the copolymerization products. J.M.S. Pure Appl. Chem. 1996, A33, 995–1004. [Google Scholar]
- Henkensmeier, D.; Wallasch, F.; Gubler, L. Radiation grafted ETFE-graft-poly(α-methyl styrenesulfonic acid-co-methacrylonitrile) membranes for fuel cell applications. J. Membr. Sci. 2013, 447, 228–235. [Google Scholar] [CrossRef]
- Dias, A.J.; McCarthy, T.J. Dehydrofluorination of poly(vinylidene Fluoride) in dimethylformamide solution: Synthesis of an operationally soluble semiconducting polymer. J. Polym. Sci. Polym. Chem. E 1985, 23, 1057–1061. [Google Scholar] [CrossRef]
No. | Sample | Alkali Treatments | Grafting Polymerization Factors | GD | IEC | Cond. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
NaOH mol/L | Na4SiO4 % | BPO /g | AMS/mL | AN/ mL | THF/mL | I/W/ mL | % | mmol/g | ×102 S/cm | ||
1 | 1 | 0.35 | 16 | 5 | 50/20 | 2.91 | - | - | |||
2 | 16 | 0.35 | 16 | 5 | 50/20 | 8.65 | - | - | |||
3 | 20 | 0.35 | 16 | 5 | 50/20 | 20.03 | - | - | |||
4 | 1 | 0.35 | 16 | 5 | 70 | 2.33 | - | - | |||
5 | 16 | 0.35 | 16 | 5 | 70 | 8.61 | - | - | |||
6 | 20 | 0.35 | 16 | 5 | 70 | 13.83 | - | - | |||
7 | PFGPA_NaOH_I/W | 1 | 0.46 | 71 | 24 | 17/7 | 35.87 | 0.56 | - | ||
8 | PFGPA_16%_I/W | 16 | 0.46 | 71 | 24 | 17/7 | 49.02 | 0.89 | 1.33 | ||
9 | PFGPA_20%_I/W | 20 | 0.46 | 71 | 24 | 17/7 | 43.61 | 0.74 | 1.33 | ||
10 | PFGPA_NaOH_THF | 1 | 0.46 | 71 | 24 | 24 | 33.74 | 0.41 | 0.72 | ||
11 | PFGPA_16%_THF | 16 | 0.46 | 71 | 24 | 24 | 49.64 | 0.57 | 1.13 | ||
12 | PFGPA_20%_THF | 20 | 0.46 | 71 | 24 | 24 | 50.83 | 0.78 | 1.51 |
Sample | Max. Load/N | Elastic Modulus/MPa | Stress/Mpa | Strain/% |
---|---|---|---|---|
Pristine PVDF | 68.14 | 1771.37 | 34.07 | 17.6 |
PVDF-16% | 16.53 | 554.89 | 8.27 | 4.8 |
PVDF-20% | 9.24 | 536.78 | 4.62 | 5.1 |
PFGPA-16%-THF | 7.828 | 0.92 | 3.92 | 4.3 |
PFGPA-16%-I/W | 10.79 | 0.043 | 5.40 | 2.8 |
PFGPA_NaOH-THF | 25.07 | 639.40 | 12.53 | 4.9 |
PFGPA_NaOH-I/W | 14.29 | 366.63 | 7.14 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, X.; Fu, P.; Zhang, Y. Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF. Polymers 2022, 14, 2424. https://doi.org/10.3390/polym14122424
Li S, Li X, Fu P, Zhang Y. Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF. Polymers. 2022; 14(12):2424. https://doi.org/10.3390/polym14122424
Chicago/Turabian StyleLi, Shufeng, Xuelin Li, Pengfei Fu, and Yao Zhang. 2022. "Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF" Polymers 14, no. 12: 2424. https://doi.org/10.3390/polym14122424
APA StyleLi, S., Li, X., Fu, P., & Zhang, Y. (2022). Alkali-Grafting Proton Exchange Membranes Based on Co-Grafting of α-Methylstyrene and Acrylonitrile into PVDF. Polymers, 14(12), 2424. https://doi.org/10.3390/polym14122424