Crosslinked Collagenic Scaffold Behavior Evaluation by Physico-Chemical, Mechanical and Biological Assessments in an In Vitro Microenvironment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collagenic Scaffold Preparation
2.1.1. Chemicals and Enzymes
2.1.2. Collagen Extraction
2.1.3. Dehydrothermal Reticulation (DHT)
2.2. Evaluation of Physico-Chemical and Mechanical Parameters
2.2.1. Nitrogen Content and Total Protein Determination
2.2.2. Moisture Content
2.2.3. Swelling
2.2.4. Porosity and Density
2.2.5. Fluid Uptake Ability
2.2.6. Water-Holding Capacity
2.2.7. Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.2.8. Morphological Characterization by Scanning Electron Microscopy
2.2.9. Mechanical and Dynamic Mechanical Analyses (DMA)
2.2.10. Thermogravimetry–Differential Scanning Calorimetry (TG-DSC)
2.3. Assessment of Biological Response to Implantable Collagenic Scaffold
2.3.1. In Vitro Cytotoxicity Analysis
2.3.2. Assessment of Inflammatory Cytokine Panel
2.3.3. Evaluation of Early/Late Apoptosis and Necrosis
2.3.4. Hemolysis Ratio
2.3.5. Hemoglobin Absorption
2.3.6. Collagenase Assay
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Physico-Chemical Parameters
3.1.1. Nitrogen Content and Total Protein Determination
3.1.2. Moisture Content
3.1.3. Swelling
3.1.4. Porosity and Density
3.1.5. Fluid Uptake Ability
3.1.6. Water Holding Capacity
3.1.7. Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
3.1.8. SEM Analysis
3.1.9. Mechanical and Mechano-Dynamic Properties
3.1.10. Thermogravimetry–Differential Scanning Calorimetry (TG-DSC)
3.2. Assessment of Biological Response to Implantable Collagenic Scaffold
3.2.1. In Vitro Cytotoxicity Analysis
3.2.2. Assessment of Inflammatory Cytokine Panel
3.2.3. Evaluation of Early and Late Apoptosis and Necrosis
3.2.4. Hemocompatibility
3.2.5. Biodegradability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incorvaia, C.; Frati, F.; Verna, N.; D’Alò, S.; Motolese, A.; Pucci, S. Allergy and the skin. Clin. Exp. Immunol. 2008, 153, 27. [Google Scholar] [CrossRef] [PubMed]
- Hambleton, J.; Shakespeare, P.G. Thermal damage to skin collagen. Burns 1991, 17, 209–212. [Google Scholar] [CrossRef]
- Markiewicz-Gospodarek, A.; Kozioł, M.; Tobiasz, M.; Baj, J.; Radzikowska-Büchner, E.; Przekora, A. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int. J. Environ. Res. Public Health 2022, 19, 1338. [Google Scholar] [CrossRef]
- Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn Wound Infections. Clin. Microbiol. Rev. 2006, 19, 403. [Google Scholar] [CrossRef] [Green Version]
- Lachiewicz, A.M.; Hauck, C.G.; Weber, D.J.; Cairns, B.A.; Duin, D. Van Bacterial Infections After Burn Injuries: Impact of Multidrug Resistance. Clin. Infect. Dis. 2017, 65, 2130–2136. [Google Scholar] [CrossRef]
- Powers, J.G.; Higham, C.; Broussard, K.; Phillips, T.J. Wound healing and treating wounds: Chronic wound care and management. J. Am. Acad. Dermatol. 2016, 74, 607–625. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Murphy, P.S.; Evans, G.R.D. Advances in wound healing: A review of current wound healing products. Plast. Surg. Int. 2012, 2012, 190436. [Google Scholar] [CrossRef]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Stretching the boundaries of extracellular matrix research. Nat. Rev. Mol. Cell Biol. 2014, 15, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, T.; Fertala, A.; Orgel, J.; San Antonio, J. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr. Pharm. Des. 2007, 13, 3608–3621. [Google Scholar] [CrossRef] [PubMed]
- Marchand, M.; Monnot, C.; Muller, L.; Germain, S. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin. Cell Dev. Biol. 2019, 89, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Datta, S.; Roche, E.; Chaffee, S.; Jose, E.; Shi, L.; Grover, K.; Khanna, S.; Sen, C.K.; Roy, S. Novel mechanisms of Collagenase Santyl Ointment (CSO) in wound macrophage polarization and resolution of wound inflammation. Sci. Rep. 2018, 8, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Masry, M.S.; Chaffee, S.; Das Ghatak, P.; Mathew-Steiner, S.S.; Das, A.; Higuita-Castro, N.; Roy, S.; Anani, R.A.; Sen, C.K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 2144–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.; Yoon, H.; Kim, G.; Kim, Y.; Lee, S.; Chun, W. Designed three-dimensional collagen scaffolds for skin tissue regeneration. Tissue Eng. Part C Methods 2010, 16, 813–820. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Yeung, D.A.; Kelly, N.H. The Role of Collagen-Based Biomaterials in Chronic Wound Healing and Sports Medicine Applications. Bioengineering 2021, 8, 8. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1509–1522. [Google Scholar] [CrossRef]
- He, L.; Mu, C.; Shi, J.; Zhang, Q.; Shi, B.; Lin, W. Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol. 2011, 48, 354–359. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.S.; Maier, V.; Buciscanu, I. Novel Procedure for Large-Scale Purification of Atelocollagen by Selective Precipitation. J. Am. Leather Chem. Assoc. 2010, 105, 1–8. [Google Scholar]
- Chen, X.; Zhou, L.; Xu, H.; Yamamoto, M.; Shinoda, M.; Kishimoto, M.; Tanaka, T.; Yamane, H. Effect of the Application of a Dehydrothermal Treatment on the Structure and the Mechanical Properties of Collagen Film. Materials 2020, 13, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, A.; Jaganathan, S.K.; Ismail, A.F.; Rajasekar, R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int. J. Nanomed. 2016, 11, 4339–4355. [Google Scholar]
- Yan, T.; Cheng, F.; Wei, X.; Huang, Y.; He, J. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr. Polym. 2017, 170, 271–280. [Google Scholar] [CrossRef]
- Sun, L.; Li, B.; Yao, D.; Song, W.; Hou, H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J. Mech. Behav. Biomed. Mater. 2018, 80, 51–58. [Google Scholar] [CrossRef]
- Kolar, K. Colorimetric Determination of Hydroxyproline as Measure of Collagen Content in Meat and Meat Products: NMKL Collaborative Study. J. AOAC Int. 1990, 73, 54–57. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Orozco, M.; Jorgensen, W.L. Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. Biochemistry 1997, 36, 7313–7329. [Google Scholar] [CrossRef]
- Kleef, F.S.M.; Van Boskamp, J.V.; Van Den Tempel, M. Determination of the number of cross-links in a protein gel from its mechanical and swelling properties. Biopolymers 1978, 17, 225–235. [Google Scholar] [CrossRef]
- Doyle, B.B.; Bendit, E.G.; Blout, E.R. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 1975, 14, 937–957. [Google Scholar] [CrossRef]
- Drexler, J.W.; Powell, H.M. Dehydrothermal crosslinking of electrospun collagen. Tissue Eng. Part C Methods 2011, 17, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Yan, Z.; Xiao, S.; Xia, Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Larouche, J.; Sheoran, S.; Maruyama, K.; Martino, M.M. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv. Wound Care 2018, 7, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Akita, S. Wound Repair and Regeneration: Mechanisms, Signaling. Int. J. Mol. Sci. 2019, 20, 6328. [Google Scholar] [CrossRef] [Green Version]
- Strbo, N.; Yin, N.; Stojadinovic, O. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv. Wound Care 2014, 3, 492. [Google Scholar] [CrossRef] [Green Version]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of acute and chronic wound healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Mirza, R.E.; Fang, M.M.; Ennis, W.J.; Kohl, T.J. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 2013, 62, 2579–2587. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.Z.; Stevenson, A.W.; Prêle, C.M.; Fear, M.W.; Wood, F.M. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines 2020, 8, 101. [Google Scholar] [CrossRef]
- Kanno, E.; Tanno, H.; Masaki, A.; Sasaki, A.; Sato, N.; Goto, M.; Shisai, M.; Yamaguchi, K.; Takagi, N.; Shoji, M.; et al. Defect of interferon γ leads to impaired wound healing through prolonged neutrophilic inflammatory response and enhanced MMP-2 activation. Int. J. Mol. Sci. 2019, 20, 5657. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Yao, P.; Lee, E.; Greenhalgh, D.; Soulika, A.M. Interferon-gamma inhibits healing post scald burn injury. Wound Repair Regen. 2012, 20, 580–591. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, J.Y.; Kim, S.Y.; Jung, K.A.; Cho, M. La Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci. Rep. 2017, 7, 10133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ljunggren, H.G.; Mix, E.; Li, H.L.; Van der Meide, P.; Elhassan, A.M.; Winblad, B.; Zhu, J. Suppression of autoimmune neuritis in IFN-γ receptor-deficient mice. Exp. Neurol. 2001, 169, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.A.; Dixon, D.; Hailey, J.R.; Harada, T.; Herbert, R.A.; Maronpot, R.R.; Nolte, T.; Rehg, J.E.; Rittinghausen, S.; Rosol, T.J.; et al. Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicol. Pathol. 2016, 44, 173–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495. [Google Scholar] [CrossRef] [PubMed]
- ASTM ASTM F 756; Standard Practice for Assessment of Hemolytic Properties of Materials. ASTM International: West Conshohocken, PN, USA, 2000.
- Lock, A.; Cornish, J.; Musson, D.S. The Role of In Vitro Immune Response Assessment for Biomaterials. J. Funct. Biomater. 2019, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Carey, S.P.; Kraning-Rush, C.M.; Williams, R.M.; Reinhart-King, C.A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 2012, 33, 4157–4165. [Google Scholar] [CrossRef] [Green Version]
- Sukhikh, S.; Noskova, S.; Ivanova, S.; Ulrikh, E.; Izgaryshev, A.; Larichev, T.; Kozlova, O.; Prosekov, A.; Babich, O. Comparative analysis of collagen-containing waste biodegradation, amino acid, peptide and carbohydrate composition of hydrolysis products. Appl. Sci. 2021, 11, 11511. [Google Scholar] [CrossRef]
- Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. BioMedical Eng. OnLine 2019, 18, 24. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 204433. [Google Scholar] [CrossRef]
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef] [Green Version]
- Khor, E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997, 18, 95–105. [Google Scholar] [CrossRef]
- Yahyouche, A.; Zhidao, X.; Czernuszka, J.T.; Clover, A.J.P. Macrophage-mediated degradation of crosslinked collagen scaffolds. Acta Biomater. 2011, 7, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, P.; Dwivedi, K.K.; Parashar, A.; Kumar, N. Non-Invasive In Vivo Quantification of Directional Dependent Variation in Mechanical Properties for Human Skin. Front. Bioeng. Biotechnol. 2021, 9, 979. [Google Scholar] [CrossRef] [PubMed]
DAY 1 | DAY 2 | |||||
---|---|---|---|---|---|---|
Temperature (°C) | 60 | 85 | 105 | 135 | 110 | Room Temperature |
Time (h) | 1 | 6 | over night | 3 | 3 | over night |
Vacuum (mbar) | 150 | 100 | 50 | 50 | 50 | 50 |
Sample | Nitrogen (%) | Total Protein (%) | Humidity (%) | Swelling Ratio | Porosity (%) | Density (%) | Fluid Uptake Ability | |
---|---|---|---|---|---|---|---|---|
AD | Urea | |||||||
Col-NT | 14.77 ± 0.43 | 92.35 ± 2.71 | 13.23 ± 0.21 | 5.5 ± 0.12 | 15.5 ± 0.81 | 98.4 ± 0.05 | 17.4 ± 2.03 | 35.61 ± 2.54 |
Col-DHT | 14.95 ± 0.10 | 93.44 ± 0.64 | 5.17 ± 0.07 | 2.9 ± 0.05 | 3.5 ± 0.30 | 93.3 ± 1.43 | 19.5 ± 1.19 | 47.74 ± 1.04 |
Sample | Mass Loss RT-160 °C | Mass Loss 160–700 °C | Endo | Exo I | ExoII | Exo III | Exo IV |
---|---|---|---|---|---|---|---|
Col-NT | 10.19% | 86.11% | 87.3 °C | 284.0 °C | 331.2 °C | 387–488 °C | 631.1 °C |
Col-DHT | 9.09% | 86.75% | 87.3 °C | 278.9 °C | 325.3 °C | 387–488 °C | 624.7 °C |
Sample | Viability (%) | Early Apooptotic Cells (%) | Late Apoptotic Cells (%) | Necrotic Cells (%) |
---|---|---|---|---|
Col-NT | 90.19% | 6.19% | 2.80% | 0.82% |
Col-DHT | 91.83% | 4.95% | 2.45% | 0.76% |
Sample | Viability (%) | Early Apooptotic Cells (%) | Late Apoptotic Cells (%) | Necrotic Cells (%) |
---|---|---|---|---|
Col-NT | 48.44% | 43.70% | 7.72% | 0.14% |
Col-DHT | 50.35% | 41.11% | 8.42% | 0.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tihăuan, B.-M.; Pircalabioru, G.G.; Axinie, M.; Marinaș, I.C.; Nicoară, A.-C.; Măruțescu, L.; Oprea, O.; Matei, E.; Maier, S.S. Crosslinked Collagenic Scaffold Behavior Evaluation by Physico-Chemical, Mechanical and Biological Assessments in an In Vitro Microenvironment. Polymers 2022, 14, 2430. https://doi.org/10.3390/polym14122430
Tihăuan B-M, Pircalabioru GG, Axinie M, Marinaș IC, Nicoară A-C, Măruțescu L, Oprea O, Matei E, Maier SS. Crosslinked Collagenic Scaffold Behavior Evaluation by Physico-Chemical, Mechanical and Biological Assessments in an In Vitro Microenvironment. Polymers. 2022; 14(12):2430. https://doi.org/10.3390/polym14122430
Chicago/Turabian StyleTihăuan, Bianca-Maria, Gratiela Gradisteanu Pircalabioru, Mădălina Axinie (Bucos), Ioana Cristina Marinaș, Anca-Cecilia Nicoară, Luminița Măruțescu, Ovidiu Oprea, Elena Matei, and Stelian Sergiu Maier. 2022. "Crosslinked Collagenic Scaffold Behavior Evaluation by Physico-Chemical, Mechanical and Biological Assessments in an In Vitro Microenvironment" Polymers 14, no. 12: 2430. https://doi.org/10.3390/polym14122430
APA StyleTihăuan, B.-M., Pircalabioru, G. G., Axinie, M., Marinaș, I. C., Nicoară, A.-C., Măruțescu, L., Oprea, O., Matei, E., & Maier, S. S. (2022). Crosslinked Collagenic Scaffold Behavior Evaluation by Physico-Chemical, Mechanical and Biological Assessments in an In Vitro Microenvironment. Polymers, 14(12), 2430. https://doi.org/10.3390/polym14122430