The Impact of Particulate Matters and Nanoparticles on Thermoplastic Polymer Coatings and Paint Layers
Abstract
:1. Introduction
2. Acrylic/Vinyl Layers: Characteristics and Vulnerabilities
2.1. Drying, Composition, and Temperature Influence
2.2. Triboelectricity and Surfactants
2.3. Vulnerabilities
3. Nanoparticles: Generalities
3.1. Production and Transmission
3.2. Air Pollution
3.3. Impacts
4. Nanoparticles: Specificities
4.1. Sizes of Particulate Matter
- -
- Coarse particles. These are defined as particles with a diameter of between 10 and 2.5 µm. This group is mainly associated with physical processes and mainly comprises particles that are formed following soil erosion, from pollen, or even from sea spray;
- -
- Fine particles. These are defined as particles with a diameter of between 2.5 and 0.1 µm. These particles come directly from combustion processes, but they can also be formed in the atmosphere;
- -
- Ultrafine particles. These are defined as particles with a diameter of less than 0.1 µm (PM 0.1). This group consists of particles resulting from combustion processes or that are formed from precursor gases.
4.2. Emission Modes
- -
- Nucleation mode (the mechanism by which a gas is converted into particles under specific conditions, resulting in the formation of secondary particles): this mode corresponds to ultrafine particles with a diameter of less than 100 nm. Particles of this size are mostly secondary and are formed by the process of nucleation, hence their name.
- -
- Accumulation mode: this mode corresponds to fine particles with a diameter of between 100 nm and 2.5 μm. Particles of this size can either be directly emitted or are from finer particle-magnification processes. Their name comes from their long lifespan in the atmosphere, which allows their accumulation.
- -
- Coarse mode: this mode corresponds to coarse particles with a diameter of between 2.5 and 10 μm. These particles are primarily particles emitted directly by natural and anthropogenic sources (such as abrasion processes and sea salt) (ibid. [52])
4.3. Particulate Matter Chemistry
5. Forces Acting on Coarse Dust of PM 10 and PM 1.5
5.1. Nature of the Forces at Play
- -
- The force of gravity;
- -
- The force of friction or drag force (in the case of gas flow) of the neutrals;
- -
- The force of thermophoresis, driving the dust toward colder zones.
- -
- The electric force;
- -
- -
- The force of interaction between particles of dust.
5.2. Deposition of the Particles
6. Propagation in the Environment of PM 0.1 Nanoparticles
6.1. Propagation
6.2. Diffusion
- -
- Dilution (the mixing of emitted ultrafine particles in a larger volume of air);
- -
- Nucleation (an important source in the formation of ultrafine particles from precursor gases). The conversion of gas into particles is the origin of secondary ultrafine particles (the source of UFPs);
- -
- Condensation (gases can condense to form new particles, which are sources of UFPs);
- -
- Coagulation (this mechanism causes the UFPs to grow with time and distance);
- -
- Evaporation (the opposite mechanism to nucleation);
- -
- Dry deposition (the mechanism in the nucleation mode is mainly related to sedimentation, which has no effect on the finest particles);
- -
- Wet deposition (related to the deposition of particles from the atmosphere by precipitation: rain, snow, or hail).
7. Nanoparticles and Specific Surfaces
7.1. Specific Surface Area
7.2. Chemical Reactivity
7.3. Trapping of VOCS and PAHs
8. Case Studies
8.1. Packaging and Materials That Act as Dust Magnets: Triboelectric Effect
8.1.1. Attraction
8.1.2. Artwork Packing Material
8.2. Materials Acting as Dust Electromagnets, Using Thermal Convection and Triboelectricity
Thermal Convection and Dust
8.3. Mock-Up
Observations
8.4. Case Study of Trailing Wires and Spider Webs with Adhered Nano Dust
8.4.1. Spiders
8.4.2. Mock-Up
8.4.3. Observations
8.5. Lucas Samaras Dusty Sculptures
8.5.1. Sculptures and Dust
8.5.2. Mock-Up
8.5.3. Observations
8.6. Experimentation of Acrylic Pictorial Layer Mock-Up Specimens
8.6.1. Mock-Up: Nature
8.6.2. Powder Choice
8.6.3. Protocol
8.6.4. Observations
8.6.5. SEM
8.6.6. Optical Microscopy and Cross-Sections
8.7. Mock-Up PW6 and Black Gas Channel SP Schwarz 4 Degusa
8.7.1. Mock-Up
8.7.2. Observations
8.8. Deposition of Fingerprint Powders on the Surface of an Acrylic Mock-Up Using Black Fingerprint Powder (Black # 1-0001 Lightning Powder (as Used in Forensics))
8.8.1. Mock-Up
8.8.2. Observations
8.9. Micro and Nanopowder Dust of Silver Carbonate, Reduced with Formaldehyde on an Acrylic Mock-Up
8.9.1. Mock-Up
8.9.2. Observations under BEI (Backscattered Electron Imaging) SEM Mode
8.10. Pictorial Layer of an Artwork by Kenneth Noland from 1973
8.10.1. Sample from a Canvas Painted with Magna
8.10.2. Old Packing Sheet from an Artwork by Kenneth Noland
8.10.3. Observations of Particulate Matter on the Packing
8.10.4. Observation of the Paint Layer
8.11. Bertrand Lavier: Untitled (from the Mirror Series) Clear Medium on an Acrylic Mirror, Contained in the Original Artist’s Frame: (61 cm × 61 cm)
8.11.1. Description
8.11.2. Observations
8.12. Deposition of Dust on the Surface of Mock-Up Transparent Acrylic Gel
8.12.1. Mock-Up
8.12.2. Observations
8.13. Deposition of PM and UFP Soot on Acrylic Paint on Canvas (1970)
8.13.1. Sample of a Highly Smoke-Treated Paint Layer after a Fire
8.13.2. Observations
8.13.3. Collecting PM and UFP
8.14. Deposition of Dust on the Surface of the Gloves Used for Handling Artworks
8.14.1. Description
- -
- The jersey weave of bleached cotton gloves very easily trap PM, which inevitably comes in contact with the artwork during handling (Figure 27a,b).
- -
- The dots of pimple-palm gloves are often made of PVC rubber; they wear out and catch dust, while quickly accumulating dirt: unfortunately, this creates a rubber-stamp effect on the pictorial surfaces, due to the transfer of dirt from the gloves (Figure 27c,d).
- -
- The surfaces of polyester/nylon gloves backed with rubber nitrile foam commonly have a certain structure that reinforces their non-slip characteristics. Observation via SEM allowed the discovery that it is mainly at the level of these reinforcements that the skin of nitrile foam degrades mechanically, trapping PM and UFP in the cavities of closed-cell rubber foam, which can then be redeposited on the paint surfaces (Figure 27e–g).
8.14.2. Mock-Up
8.14.3. Observations
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremonesi, P.; Héritier, P.A. Un Approccio Innovativo Alla Pulitura Di Superfici Dipinte Sensibili: La Combinazione Simultanea Di Erogazione Controllata Di Liquido e Micro-Aspirazione; Il Prato: Villatora, Italy, 2017. [Google Scholar]
- The International Symposium. Around Picasso: An Insight into the Relationship between Material Choices and Failure Mechanisms, Held at the Museu Picasso de Barcelona in 2018 a Case about Cleaning Treatments on Sensitive Painted Surfaces: Comparative Study of the Effects of Traditional and Innovative Cleaning Treatments on Sensitive Painted Surfaces: Cotton Swab Rolling vs. Combined Micro-Aspiration and Liquid-Dispensing System. Pierre-Antoine Héritier. Available online: http://www.blogmuseupicassobcn.org/2020/11/a-case-about-cleaning-treatments-on-sensitive-painted-surfaces/?lang=en (accessed on 7 May 2022).
- Casoli, A.; Cremonesi, P.; Héritier, P.A.; Volpin, S. Analytical Study to Monitor the Effectiveness of a Combined Liquid-Dispensing and Micro-aspiration System for the Cleaning of Modern Oil Paintings. In Conservation of Modern Oil Paintings; van den Berg, K., Bonaduce, I., Burnstock, A., Ormsby, B., Scharff, M., Carlyle, L., Heydenreich, G., Keune, K., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Héritier, P.-A.; Casoli, A.; Cremonesi, P.; De Luca, D.; Marseglia, A.; Volpin, S. Combination of a Solvent-dispensing and Micro-aspiration Device for Removal of Varnishes on Painted Surfaces. Stud. Conserv. 2022, 67, 1–8. [Google Scholar] [CrossRef]
- Cremonesi, P. Combination of a Liquid-Dispensing and Micro-Aspiration Device for the Cleaning of Sensitive Painted Surfaces. Stud. Conserv. 2017, 63, 315–325. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Ligocki, M.P.; Salmon, L.G.; Cass, G.R.; Fall, T.; Jones, M.C.; Liu, H.I.; Ma, T. Airborne Particles in Museums; Research in Conservation 6; Getty Conservation Institute: Marina del Rey, CA, USA, 1993; Available online: http://hdl.handle.net/10020/gci_pubs/airborne_particles (accessed on 7 May 2022).
- Richard, M.; Mecklenburg, M.F.; Merrill, R.M. Art in Transit: Handbook for Packing and Transporting Paintings; Natl Gallery of Art: Washington, DC, USA, 1991. [Google Scholar]
- Guillemard, D.; Laroque, C. Manuel de Conservation Préventive [Texte Imprimé]: Gestion et Contrôle des Collections; Denis Guillemard et Claude Laroque Université de Paris: Bourgogne, France, 1999. [Google Scholar]
- La Conservation Préventive dans les Musées; Manuel D’accompagnement Université du Québec à Montréal: Montréal, QC, Canada, 1995; Available online: https://www.worldcat.org/title/conservation-preventive-dans-les-musees-manuel-daccompagnement/oclc/1039049005?referer=di&ht=edition (accessed on 7 May 2022).
- Perego, F. Dictionnaire des Matériaux du Peintre; Editeur Belin: Paris, France, 2005. [Google Scholar]
- Ambiente, Città e Museo a cura di Gabriella Lippi Casa—Arte e Restauro; Nardini Editore: Florence, Italy, 1995.
- Cousserand, I. La Muséologie; Histoire, Développements, Enjeux Actuels De André Gob et Noémie Drougu et; Armand Colin: Paris, France, 2003. [Google Scholar]
- Mandrioli, P. Aerobiologia e Beni Culturali—Metodologie e Tecniche di Misura; Nardini: Florence, Italy, 1998. [Google Scholar]
- Grøntoft, T.; Lopez-Aparicio, S.; Scharff, M.; Ryhl-Svendsen, M.; Andrade, G.; Obarzanowski, M.; Thickett, D. Impact Loads of Air Pollutants on Paintings: Performance Evaluation by Modeling for Microclimate Frames. J. Am. Inst. Conserv. 2011, 50, 105–122. [Google Scholar] [CrossRef]
- Grau-Bové, J.; Mazzei, L.; Thickett, D.; Strlič, M. New Perspectives on the Study of Particulate Matter Deposition within Historic Interiors. Stud. Conserv. 2018, 64, 193–202. [Google Scholar] [CrossRef]
- Din, S.A.M.; Kolapo, O.M.; Osman, S.; Adnan, M.A.; Raduian, N.J. A Review on Airborne Particulate Soiling Defect on Users and Artefacts in the Museum Environment. Opción Rev. Cienc. Hum. Soc. 2019, 22, 933–958. [Google Scholar]
- Nazaroff, W.W.; Salmon, L.G.; Cass, G.R. Concentration and fate of airborne particles in museums. Environ. Sci. Technol. 1990, 24, 66–77. [Google Scholar] [CrossRef]
- Grzywacz, C.M. Monitoring for Gaseous Pollutants in Museum Environments; Getty Publications: Los Angeles, CA, USA, 2006. [Google Scholar]
- Uring, P.; Chabas, A.; De Reyer, D.; Gentaz, L.; Triquet, S.; Mirande-Bret, C.; Alfaro, S. The Bayeux embroidery: A dust deposition assessment. Herit. Sci. 2018, 6, 23. [Google Scholar] [CrossRef]
- Keefe, M.; Tucker, C.; Behr, A.M.; Meyers, G.; Reinhardt, C.; Boomgaard, T.; Learner, T. Art and Industry: Novel Approaches to the Evaluation and Development of Cleaning Systems for Artists’ Acrylic Latex Paints. J. Coat. Technol. 2011, 8, 30. [Google Scholar]
- Delcroix, G.; Havel, M. Phénomènes Physiques et Peinture Artistique; Edition EREC: Lexington, KY, USA, 1988. [Google Scholar]
- Iscen, A.; Forero-Martinez, N.C.; Valsson, O.; Kremer, K. Acrylic Paints: An Atomistic View of Polymer Structure and Effects of Environmental Pollutants. J. Phys. Chem. B 2021, 125, 10854–10865. [Google Scholar] [CrossRef]
- Dillon, C.E.; Lagalante, A.F.; Wolbers, R.C. Acrylic emulsion paint films. The effect of solution pH, conductivity and ionic strength on film swelling and surfactant removal. Stud. Conserv. 2014, 59, 52–62. [Google Scholar] [CrossRef]
- Dillon, C.E.; Lagalante, A.F.; Wolbers, R.C. Aqueous cleaning of acrylic emulsion paint films. The effect of solution pH, conductivitv and ionic strength on film swelling and surfactant removal. Stud. Conserv. 2014, 59, 52–62. [Google Scholar] [CrossRef]
- Ziraldo, I.; Watts, K.; Luk, A.; Lagalante, A.F.; Wolbers, R.C. The influence of temperature and humidity on swelling and surfactant migration in acrylic emulsion paint films. Stud. Conserv. 2016, 61, 209–221. [Google Scholar] [CrossRef]
- Grau-Bové, J.; Strlic, M. Fine particulate matter in indoor cultural heritage: A literature review. Herit. Sci. 2013, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Anaf, W.; Horemans, B.; Madeira, T.I.P.P.; Carvalho, M.L.; De Wael, K.; Van Grieken, R. Effects of a constructional intervention on airborne and deposited particulate matter in the Portuguese National Tile Museum, Lisbon. Environ. Sci. Pollut. Res. 2013, 20, 1849–1857. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P. Aesthetics of simulated soiling patterns on architecture. Environ. Sci. Technol. 2004, 38, 3971–3976. [Google Scholar] [CrossRef]
- Chatoutsidou, S.E.; Lazaridis, M. Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries. J. Cult. 2019, 39, 221–228. [Google Scholar] [CrossRef]
- Di Turo, F.; Proietti, C.; Screpanti, A.; Fornasier, M.F.; Cionni, I.; Favero, G.; De Marco, A. Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios. Environ. Pollut. 2016, 218, 586–594. [Google Scholar] [CrossRef]
- Khalatbari, A.; Jupille, J. La Nano Révolution: Comment Les Nanotechnologies Transforment Déjà Notre Quotidien Azar Khalatbari; Éditions QUAE: Paris, France, 2018. [Google Scholar]
- Husson, J.-F. Rapport Fait au Nom de la Commission D’enquete Sur le Cout Économique et Financier de la Pollution de L’air; Édition des Lois et Décrets du 9 Juillet 2015; Dépot Publié au Journal Officiel: Paris, France, 2015. [Google Scholar]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Salieri, B.; Stoudmann, N.; Hischier, R.; Som, C.; Nowack, B. How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective? Sustainability 2021, 13, 9922. [Google Scholar] [CrossRef]
- Rapport Bibliographique Sur Les Particules Ultrafines (PUF)—ATMO Grand Est. Espace Européen de L′entreprise de STRASBOURG—5 Rue de Madrid; ATMO Grand Est: Schiltigheim, France, 2020. [Google Scholar]
- Materić, D.; Ludewig, E.; Brunner, D.; Röckmann, T.; Holzinger, R. Nanoplastics transport to the remote, high-altitude Alps. Environ. Pollut. 2021, 288, 117697. [Google Scholar] [CrossRef]
- Bilan Environnemental de la France; Édition 2020 MAI 2021. Available online: https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/bilan-environnemental/pdf/bilan-environnemental-de-la-france-2020 (accessed on 7 May 2022).
- Nanotechnologie—Nanoparticules: Quels Dangers, Quels Risques? Rapport du Comité de la Prévention et de la Précaution (CPP). 3 February 2020. Available online: https://www.ecologie.gouv.fr/sites/default/files/CPP%20-%20Nanotechnologie%20Nanoparticules.pdf (accessed on 7 May 2022).
- Strasbourg Respire Former, Informer et Lutter Contre la Pollution de L’air. 11 November 2020. Available online: https://strasbourgrespire.fr/2020/11/diesel-des-millions-de-particules-dans-le-corps-denfants-strasbourgeois/ (accessed on 7 May 2022).
- Particules Ultrafines et Impact Sur la Santé: Révision de la Politique de l’UE; Health1UP2 Project, Results in Brief, H2020, CORDIS, European Commission. Available online: https://cordis.europa.eu/article/id/415545-ultrafine-particles-and-health-impact-revising-eu-policy/fr (accessed on 7 May 2022).
- Morawska, L.; Ristovski, Z.; Jayaratne, E.; Keogh, D.; Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Charron, A.; Harrison, R.M. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ. 2003, 37, 4109–4119. [Google Scholar] [CrossRef]
- Vaaraslahti, K.; Virtanen, A.; Ristimäki, J.; Keskinen, J. Nucleation Mode Formation in Heavy-Duty Diesel Exhaust with and without a Particulate Filter. Environ. Sci. Technol. 2004, 38, 4884–4890. [Google Scholar] [CrossRef] [PubMed]
- Charron, A.; Birmili, W.; Harrison, R.M. Factors influencing new particle formation at the rural site, Harwell, United Kingdom. J. Geophys. Res. Earth Surf. 2007, 112, D14210. [Google Scholar] [CrossRef] [Green Version]
- Presto, A.A.; Saha, P.K.; Robinson, A.L. Past, present, and future of ultrafine particle exposures in North America Albert. Atmos. Environ. X 2021, 10, 100109. Available online: https://www.sciencedirect.com/science/article/pii/S2590162121000095 (accessed on 7 May 2022).
- Junkermann, W.; Hacker, J.M. Ultrafine particles in the lower troposphere: Major sources, invisible plumes, and meteorological transport processes. Bull. Am. Meteorol. Soc. 2018, 99, 2587–2602. [Google Scholar] [CrossRef]
- Pollution de L’air: Les Particules Fines (PM2,5, PM10)—Notre-Planete Notre-Planete.Info. Available online: https://www.notreplanete.info/environnement/pollution_air/particules-fines.php (accessed on 7 May 2022).
- Zhu, J.; Chen, Y.; Shang, J.; Zhu, T. Effects of air/fuel ratio and ozone aging on physicochemical properties and oxidative potential of soot particles. Chemosphere 2019, 220, 883–891. Available online: www.elsevier.com/locate/chemosphere (accessed on 7 May 2022). [CrossRef]
- Trois Questions Sur les Particules Ultra-Fines (PUF) Mesurées Dans les Hauts-de-France. Available online: https://france3-regions.francetvinfo.fr/hauts-de-france/trois-questions-particules-ultra-fines-puf-mesurees-hauts-france-1748257.html (accessed on 7 May 2022).
- Zhang, S.; Thomasson, A.; Mesbah, B.; Guernnion, P.Y.; Pin, F.; Aleixo, T.; Roze, F.; Dalle, M.; Le Bihan, O. La surveillance des particules ultrafines en France. In Proceedings of the Congrès Français sur les Aérosols (CFA 2018), Paris, France, 30–31 January 2018. [Google Scholar] [CrossRef]
- Rapport Bibliographique Sur les Particules Ultrafines (PUF). ATMO Grand Est. 2020. Available online: http://www.atmo-grandest.eu/document/2574 (accessed on 7 May 2022).
- Les Particules Fines—La Synthèse de L’asef, Association Santé Environnement France. 2022. Available online: https://www.asef-asso.fr/production/les-particules-fines-la-synthese-de-lasef/ (accessed on 7 May 2022).
- Nanotechnologies Nanoparticules: Quels Dangers, Quels Risques? Paris, Mai 2006 Ministère de L’écologie et du Développement Durable. Available online: https://www.ecologie.gouv.fr/sites/default/files/CPP%20avis%20200607.pdf (accessed on 7 May 2022).
- Baulig, A.; Poirault, J.-J.; Ausset, P.; Schins, R.; Shi, T.; Baralle, D.; Dorlhene, P.; Meyer, M.; Lefevre, R.; Baeza-Squiban, A.; et al. Physicochemical Characteristics and Biological Activities of Seasonal Atmospheric Particulate Matter Sampling in Two Locations of Paris. Environ. Sci. Technol. 2004, 38, 5985–5992. [Google Scholar] [CrossRef]
- CMI IPA. Nanoparticules Naturelles Les Nanoparticules; CMI IPA: Avignon, France, 2018. [Google Scholar]
- Rodríguez, S.; Cuevas, E. The Contributions of ‘minimum Primary Emissions’ and ‘new Particle Formation Enhancements’ to the Particle Number Concentration in Urban Air. J. Aerosol. Sci. 2007, 38, 1207–1219. [Google Scholar] [CrossRef]
- Morawska, L.; Thomas, S.; Bofinger, N.; Wainwright, D.; Neale, D. Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants. Atmos. Environ. 1998, 32, 2467–2478. [Google Scholar] [CrossRef] [Green Version]
- Caractéristiques Physico-Chimique Des HAP Université De Nantes. Available online: http://uved.univ-nantes.fr/GRCPB/sequence2/html/ressources/documents/Annexe_2_caracterisiques_physico_chimiques_des_HAP.pdf (accessed on 7 May 2022).
- Ristovski, Z.D.; Morawska, L.; Bofinger, N.D.; Hitchins, J. Submicrometer and Supermicrometer Particulate Emission from Spark Ignition Vehicles. Environ. Sci. Technol. 1998, 32, 3845–3852. [Google Scholar] [CrossRef]
- Zhang, S. Strategie «Particules Ultrafines» Pour la Region Hauts-de-France. Vérificateur: Nathalie Dufour; Diffusion: Juin 2017; Atmo Hauts-de-France. Available online: http://pollution.ott.fr/wp-content/uploads/2020/02/strategie_PUF_Hauts-de-France_2017_min.pdf (accessed on 7 May 2022).
- Maxime Mikikian. Les Plasmas Poussiéreux: Synthèse, Structure et Dynamique d’un Nuage de Poussières dans un Plasma. Physique [physics]; Université d’Orléans: Orléans, France, 2008; Available online: https://tel.archives-ouvertes.fr/tel-00361650/document (accessed on 7 May 2022).
- Barnes, M.S.; Keller, J.H.; Forster, J.C.; O’Neill, J.A.; Coultas, D.K. Transport of dust particles in glow-discharge plasmas. Phys. Rev. Lett. 1992, 68, 313. [Google Scholar] [CrossRef] [PubMed]
- Land, V.; Goedheer, W.J. The plasma inside a dust free void: Hotter, denser, or both? New J. Phys. 2007, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- André, R.; Denis, B. Les Aérosols Physique et Métrologie André Renoux; Editions Lavoisier: Paris, France, 1998. [Google Scholar]
- Renaud ANSART Université de Toulouse. Émission de Poussières Lors de la Manipulation de Poudre: Interaction Entre Les Particules en Mouvement et L’air Ambiant. Ph.D. Thesis, Par Renaud ANSART Université de Toulouse, Toulouse, France, 2007. [Google Scholar]
- Air Quality Expert Group. Ultrafine Particles (UFP) in the UK. 2018. Available online: https://ukair.defra.gov.uk/assets/documents/reports/cat09/1807261113_180703_UFP_Report_FINAL_for_publication.pdf (accessed on 7 May 2022).
- Cass, G.R.; Hughes, L.A.; Bhave, P.; Kleeman, M.J.; Allen, J.O.; Salmon, L.G. The chemical composition of atmospheric ultrafine particles. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2581–2592. [Google Scholar] [CrossRef]
- Les Poussières Fines en Suisse. Rapport de la Commission Fédérale de L’hygiène de L’air (CFHA) Rapport de la Commission Fédérale de L’hygiène de L’air (CFHA); CFHA: Vancouver, BC, Canada, 2007. [Google Scholar]
- Nanomatériaux, Nanoparticules Document Santé et Sécurité au Travail INRS 2020. Available online: https://www.inrs.fr/risques/nanomateriaux/ce-qu-il-faut-retenir.html (accessed on 7 May 2022).
- Métrologie Dimensionnelle de Nanoparticules Mesurées Par AFM et Par MEB Thèse Pour L’obtention du Titre de Docteur de L’ensta–Paristech Specialite: Chimie par Alexandra Delvallee. 2014. Available online: https://pastel.archives-ouvertes.fr/tel-01102461/document (accessed on 7 May 2022).
- Regniers, O. Les Particules Diesel Ultrafines: Techniques de Mesure à L’émission et à L’immission; Mémoire de DESS; Université Libre de Bruxelles: Bruxelles, Belgium, 2006. [Google Scholar]
- Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; et al. Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: Results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations. Atmos. Environ. 2019, 202, 256–268. [Google Scholar] [CrossRef]
- Crabbe, V. Toxicologie Expérimentale des Particules Ultrafines Atmosphériques; Université Libre de Bruxelles: Bruxelles, Belgium, 2007. [Google Scholar]
- Harrison, R.M.; Shi, J.P.; Jianxin, Y.; Khan, A.; Mark, D.; Kinnersley, R.; Yin, J. Measurement of number, mass and size distribution of particles in the atmosphere. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2567–2580. [Google Scholar] [CrossRef]
- Marano, F. Les Particules Atmosphériques Fines et Ultrafines: Lʼapport de la Toxicologie dans Lʼévaluation des Risques pour la santé. In Pollution Atmosphérique—Numéro Spécial; Available online: https://www.appa.asso.fr/wp-content/uploads/2020/02/Marano_2010.pdf (accessed on 7 May 2022).
- Chimie et Nano: Une Question d’échelle! Sophie Carenco in CultureSciences-Chimie 2018. Available online: https://culturesciences.chimie.ens.fr/thematiques/chimie-organique/catalyse/chimie-et-nano-une-question-d-echelle (accessed on 7 May 2022).
- Application de Nanoparticules Luminescentes pour la Détection de Traces Papillaires Moret Sébastien 2013 Université de Lausanne-CH. Available online: https://serval.unil.ch/resource/serval:BIB_9D46F4C0F70F.P001/REF.pdf (accessed on 7 May 2022).
- Bensabath, T. Approche Préventive Pour Une Réduction des Hydrocarbures Aromatiques Polycy-Cliques (HAP) Dans Les Fours à Pyrolyse: Application à La Cémentation Gazeuse à Basse Pression. Génie des procédés; Université de Lorraine: Lorraine, France, 2017; Available online: https://tel.archives-ouvertes.fr/tel-01710271 (accessed on 7 May 2022). (In French)
- Lahaye, J.; Prado, G. Morphology and Internal Structure of Soot and Carbon Blacks. In Particulate Carbon; Siegla, D.C., Smith, G.W., Eds.; Springer: Boston, MA, USA, 1981. [Google Scholar] [CrossRef]
- Watson, P.; Prance, R.J.; Beardsmore-Rust, S.T.; Prance, H. Imaging electrostatic fingerprints with implications for a forensic timeline. Forensic Sci. Int. 2011, 209, e41–e45. [Google Scholar] [CrossRef]
- Beardsmore-Rust, S.T.; Watson, P.; Prance, R.J.; Harland, C.J.; Prance, H. Quantitative Measurement of Tribo-electric Charging Phenomena of Dielectric Materials. In Proceedings of the Joint ESA/IEEE-IAS/IEJ/SFE/IEA Conference, Boston, MA, USA, 16–18 June 2009. [Google Scholar]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Izadi, H.; Penlidis, A. Polymeric Bio-Inspired Dry Adhesives: Van der Waals or Electrostatic Interactions? Macromol. React. Eng. 2013, 7, 588–608. [Google Scholar] [CrossRef]
- Prawatya, Y. Multivariate Optimisation and Statistical Process Control of Polymer Triboelectric Charging. In Yopa Eka Prawatya. Mechanics of Materials [Physics.Class-Ph]; Université de Poitiers: Poitiers, France, 2018. [Google Scholar]
- Albrecht, V.; Janke, A.; Németh, E.; Spange, S.; Schubert, G.; Simon, F. Some aspects of the polymers’ electrostatic charging effects. J. Electrost. 2009, 67, 7–11. [Google Scholar] [CrossRef]
- Žilinskas, P.; Lozovski, T.; Jurkšus, J. Electrostatic Properties and Characterization of Specific Polymeric Materials for Building. Mater. Sci. 2010, 16, 57–62. [Google Scholar]
- How Can You Make Plastic Film Anti-Static? KIVO HQ Netherlands. Available online: https://www.kivo.nl/en/knowledge-base/how-can-you-make-plastic-film-anti-static/ (accessed on 28 May 2022).
- Shelton, S. A Practical Guide to Controlling Electrostatic Charges on Film Webs; Simco Industrial Static Control: Hatfield, PA, USA, 1998; Available online: https://www.tappi.org/content/pdf/member_groups/packaging/plc9893.pdf (accessed on 28 May 2022).
- Anti-Static Control Problems in The Plastics. Industry BPF British Plastics Federation. Available online: https://www.bpf.co.uk/plastipedia/processes/Anti_Static_Control_Problems_in_the_Plastics_Industry.aspx (accessed on 28 May 2022).
- Marra, W.D., Jr.; Coury, J.R.; Braz, J. Measurement of the electrostatic charge in airborne particles: I—development of the equipment and preliminary results. Chem. Eng. 2000, 17. [Google Scholar] [CrossRef]
- Convection Thermique: Cellules Convectives Jean-Pierre CHALON: Universalis.fr. Available online: https://www.universalis.fr/encyclopedie/atmosphere-thermodynamique/6-les-transferts-de-chaleur-par-convection-thermique-cellules-convectives/ (accessed on 28 May 2022).
- La Composition de la Soie d’Araignée (Le fil de Traîne). Available online: https://tpesoiearaignee.wordpress.com/author/adrienmarchiel/ (accessed on 28 May 2022).
- Microscopie Électronique à Balayage. Available online: http://www.univ-oeb.dz/fsesnv/wp-content/uploads/2020/04/M1-physique-des-matériaux-partie-du-cours-La-microscopie-électronique-à-balayage.pdf (accessed on 28 May 2022).
- Filmification des Systèmes COLLOIDAUX Yves Holl 2010 Groupe Français D’études et D’applications des Polymère. Available online: https://www.gfp.asso.fr/wp-content/uploads/Filmification-Y-Holl.pdf (accessed on 28 May 2022).
- Magnin, F. Morphologie de Films de Latex Bidisperses, Après Séchage, à Différentes Échelles. Chimie; Université Pierre et Marie Curie–Paris VI: Paris, France, 2007. [Google Scholar]
- Nassar, M. Simulation de la Formation de Films Polymères par Séchage de Colloi des Aqueux; Chimie-Physique [Physics.Chem-Ph]; Université de Strasbourg: Strasbourg, France, 2017. (In French) [Google Scholar]
- Nations Unies Conseil Économique et Social: Rapport des Coprésidents du Groupe D’experts Du Noir De Carbone ONUece.eb.air.2010.7. Available online: https://unece.org/fileadmin/DAM/env/documents/2010/eb/eb/ece.eb.air.2010.7.f.pdf (accessed on 28 May 2022).
- Fenton, T. Appreciating Noland. Available online: http://www.sharecom.ca/noland/default.html (accessed on 28 May 2022).
- Rivers, S.; Umney, N. Conservation of Furniture Routledge Series in Conservation and Museology; Routledge: Oxfordshire, UK, 2007. [Google Scholar]
- Vitrines Bertrand Lavier Éditeur; Bilingual Edition; Yvon Lambert: Paris, France, 2000; Available online: https://www.yvon-lambert.com/products/bertrand-lavier-vitrines (accessed on 7 May 2022).
- Bertrand Lavier, Depuis 1969; Centre Pompidou: Paris, France, 2012; Available online: https://www.centrepompidou.fr/en/program/calendar/event/cy6R57 (accessed on 7 May 2022).
- Golden Information Sheet. Golden Artist Colors, Inc. Available online: https://justpaint.org/blocking-support-induced-discoloration/ (accessed on 28 May 2022).
- Hamm, J.; Gavett, B.; Golden, M. The discoloration of Acrylic Dispersion Media. In Saving the Twentieth Century: The Conservation of Modern Materials; Canadian Conservation Institute: Ottawa, ON, Canada, 1991; pp. 381–392. Available online: https://www.scribd.com/document/409992902/Saving-the-20th-Century-The-Conservation-of-Modern-Materials-pdf (accessed on 7 May 2022).
- Wildfire Smoke: A Guide for Public Health Officials. Available online: https://www.airnow.gov/sites/default/files/2021-09/wildfire-smoke-guide_0.pdf (accessed on 28 May 2022).
- Basic Handling of Paintings—Canadian Conservation Institute (CCI) Notes 10/13. Available online: https://www.canada.ca/en/conservation-institute/services/conservation-preservation-publications/canadian-conservation-institute-notes/basic-handling-paintings.html (accessed on 28 May 2022).
- Guide International de Sécurité. Chapitre 3 Pour les Bateaux Citernes de la Navigation Intérieure et les Terminaux Electricité Statique. Available online: https://www.isgintt.org/files/documents/Chapter_03fr_isgintt_062010.pdf (accessed on 28 May 2022).
- EÉlectricité Statique. Colloque Mauricie 2015, 19e Carrefour en Santé et Sécurité du Travail 4 Novembre 2015. Patricia Vega, ing. ASFETM. Available online: https://asfetm.com/wp-content/uploads/2013/11/Drummondville-4-novembre-2015-Electricite-statique-Web.pdf (accessed on 28 May 2022).
EDS Energy-Dispersive X-ray Spectroscopy ZAF Method Standardless Quantitative Analysis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | C | N | O | Na | Mg | Al | Si | S | Cl | K | Ca | Fe | Total |
Analysis I 1/4 | 30.28 | 14.7 | 28.47 | 0.68 | 3.31 | 5.93 | 3.15 | 1.64 | 10.9 | 0.94 | 100.00 | ||
Analysis I 2/4 | 26.09 | 31.07 | 6.62 | 8.94 | 3.35 | 4.24 | 17.59 | 2.11 | 100.00 | ||||
Analysis I 3/4 | 22.85 | 45.09 | 0.82 | 1.59 | 2.72 | 1.72 | 1.56 | 22.09 | 1.56 | 100.00 | |||
Analysis I 4/4 | 29.42 | 44.69 | 0.39 | 0.37 | 1.22 | 2.1 | 3.03 | 0.64 | 16.57 | 1.57 | 100.00 | ||
Analysis II 1/1 | 25.32 | 44.05 | 0.71 | 10.88 | 10.11 | 8.93 | 100.00 | ||||||
Analysis III 2/4 | 19.84 | 34.51 | 1.21 | 5.25 | 13.66 | 11.02 | 14.51 | 100.00 | |||||
Analysis III 3/4 | 46.17 | 38.75 | 3.1 | 0.81 | 11.16 | 100.00 | |||||||
Analysis III 4/4 | 55.61 | 37.11 | 0.49 | 0.69 | 0.57 | 0.65 | 4.88 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Héritier, P.-A. The Impact of Particulate Matters and Nanoparticles on Thermoplastic Polymer Coatings and Paint Layers. Polymers 2022, 14, 2477. https://doi.org/10.3390/polym14122477
Héritier P-A. The Impact of Particulate Matters and Nanoparticles on Thermoplastic Polymer Coatings and Paint Layers. Polymers. 2022; 14(12):2477. https://doi.org/10.3390/polym14122477
Chicago/Turabian StyleHéritier, Pierre-Antoine. 2022. "The Impact of Particulate Matters and Nanoparticles on Thermoplastic Polymer Coatings and Paint Layers" Polymers 14, no. 12: 2477. https://doi.org/10.3390/polym14122477
APA StyleHéritier, P. -A. (2022). The Impact of Particulate Matters and Nanoparticles on Thermoplastic Polymer Coatings and Paint Layers. Polymers, 14(12), 2477. https://doi.org/10.3390/polym14122477