Experimental Investigation of the Different Polyacrylamide Dosages on Soil Water Movement under Brackish Water Infiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Soil and Water Samples
2.2. Experimental Methods
2.3. Basic Theory
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of PAM Dosages on Infiltration Characteristics of Brackish Water
3.2. Effect of PAM Dosages on Soil Water Distribution
3.3. Effect of PAM Dosages on Infiltration Model Parameters
3.4. Effects of PAM Dosages on Soil Saturated Water Content and Saturated Hydraulic Conductivity
3.5. Effect of PAM Application Rate on Parameters of Brooks-Corey Model
3.6. Effect of PAM Dosages on Soil Water Diffusivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving Agricultural Water Productivity to Ensure Food Security in China under Changing Environment: From Research to Practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhan, H.; Yang, S. Effect of Long-Term Saline Mulched Drip Irrigation on Soil-Groundwater Environment in Arid Northwest China. Sci. Total Environ. 2022, 820, 153222. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, D.; Zhang, A.; Zheng, C.; Li, K.; Ning, S.; Zhang, J.; Sun, C. Effects of Saline Water Mulched Drip Irrigation on Cotton Yield and Soil Quality in the North China Plain. Agric. Water Manag. 2022, 262, 107405. [Google Scholar] [CrossRef]
- Liao, Q.; Gu, S.; Kang, S.; Du, T.; Tong, L.; Wood, J.D.; Ding, R. Mild Water and Salt Stress Improve Water Use Ef Fi Ciency by Decreasing Stomatal Conductance via Osmotic Adjustment in Fi Eld Maize. Sci. Total Environ. 2022, 805, 150364. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jin, M.; Huang, J.; Yuan, J. The Soil–Water Flow System beneath a Cotton Field in Arid North-West China, Serviced by Mulched Drip Irrigation Using Brackish Water. Hydrogeol. J. 2015, 23, 35–46. [Google Scholar] [CrossRef]
- Chen, W.; Jin, M.; Ferré, T.P.A.; Liu, Y.; Xian, Y.; Shan, T.; Ping, X. Spatial Distribution of Soil Moisture, Soil Salinity, and Root Density beneath a Cotton Field under Mulched Drip Irrigation with Brackish and Fresh Water. Field Crop. Res. 2018, 215, 207–221. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.; Tian, L.; He, X.; Gao, Y.; Wang, Z.; Ren, F. Soil Physicochemical Properties and Cotton (Gossypium hirsutum L.) Yield under Brackish Water Mulched Drip Irrigation. Soil Tillage Res. 2020, 199, 104592. [Google Scholar] [CrossRef]
- Ren, F.; Yang, G.; Li, W.; He, X.; Gao, Y.; Tian, L.; Li, F.; Wang, Z.; Liu, S. Yield-Compatible Salinity Level for Growing Cotton (Gossypium hirsutum L.) under Mulched Drip Irrigation Using Saline Water. Agric. Water Manag. 2021, 250, 106859. [Google Scholar] [CrossRef]
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of Soil Physical Properties and Soil Water Retention with Biochar-Based Soil Amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
- Ai, F.; Yin, X.; Hu, R.; Ma, H.; Liu, W. Research into the Super-Absorbent Polymers on Agricultural Water. Agric. Water Manag. 2021, 245, 106513. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Hamdan, E.H.; Gharaibeh, M.A.; Hanandeh, A. El Improving Aggregate Stability and Hydraulic Properties of Sandy Loam Soil by Applying Polyacrylamide Polymer. Soil Tillage Res. 2021, 206, 104821. [Google Scholar] [CrossRef]
- Ao, C.; Yang, P.; Zeng, W.; Chen, W.; Xu, Y.; Xu, H.; Zha, Y.; Wu, J.; Huang, J. Impact of Raindrop Diameter and Polyacrylamide Application on Runoff, Soil and Nitrogen Loss via Raindrop Splashing. Geoderma 2019, 353, 372–381. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, R.; Han, P.; Sun, H.; Sun, H.; Li, C.; Yang, L. Soil Water Repellency of the Artificial Soil and Natural Soil in Rocky Slopes as Affected by the Drought Stress and Polyacrylamide. Sci. Total Environ. 2018, 619, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A.I.; Meshesha, D.T.; Adgo, E.; Fenta, A.A.; Ebabu, K.; et al. Effect of Polyacrylamide Integrated with Other Soil Amendments on Runoff and Soil Loss: Case Study from Northwest Ethiopia. Int. Soil Water Conserv. Res. 2022. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Tang, Z. Effect of Fly Ash- and Polyacrylamide-Consolidated Soil Layer on A. Splendens Growth in a Desert in North China. Catena 2022, 210, 105935. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; O’Kelly, B.C. Intermittent Swelling and Shrinkage of a Highly Expansive Soil Treated with Polyacrylamide. J. Rock Mech. Geotech. Eng. 2022, 14, 252–261. [Google Scholar] [CrossRef]
- Lentz, R.D.; Sojika, R.E. Field Results Using Polyacrylamide to Man-Age Furrow Erosion and Infiltration. Soil Sci. 1994, 158, 274–282. [Google Scholar] [CrossRef]
- Cao, L.; Zhao, S.; Liang, X.; Liu, Y.; Zhao, Y. Improvement Effects of PAM On Soil Water-Stable Aggregates and Its Mechanisms in Different Soils in the Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2008, 24, 45–49. [Google Scholar]
- Feng, X.; Pan, Y.; Zhang, Z.; Xie, H. Modeling Research of the Effect of PAM on Soil Evaporation. Syst. Sci. Compr. Stud. Agric. 2008, 24, 49–52. [Google Scholar]
- Han, F.; Zheng, J.; Li, Z.; Zhang, X. Effect of PAM on Soil Physical Properties and Water Distribution. Trans. Chin. Soc. Agric. Eng. 2010, 26, 70–74. [Google Scholar]
- Yin, C.Y.; Zhao, J.; Chen, X.B.; Li, L.J.; Liu, H.; Hu, Q.L. Desalination Characteristics and Efficiency of High Saline Soil Leached by Brackish Water and Yellow River Water. Agric. Water Manag. 2022, 263, 107461. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Tan, S.; Xu, D. Effects of Gypsum on Water Movement Characteristics of Saline Alkali Soil under Brackish Water Infiltration. J. Soil Water Conserv. 2016, 30, 130–135. [Google Scholar]
- Wang, Q.; Zhang, J.; Tan, S. Effects of PAM on Characteristics of Water and Salt Movement in Soil under Brackish Water Infiltration. Acta Pedol. Sin. 2016, 53, 1056–1064. [Google Scholar]
- Shi, X.; Wang, Q.; Ju, L. Prameters of Philip and Green-Ampt Models for Soils Infiltrated with Brachish Water. Acta Pedol. Sin. 2007, 44, 360–363. [Google Scholar]
- Bi, Y.; Wang, Q.; Xue, J. Infiltration Characteristic Contrast Analysis of Fresh Water and Saline Water. Trans. Chin. Soc. Agric. Mach. 2010, 41, 70–75. [Google Scholar]
- Wang, C.; Wang, Q.; Lv, T.; Zhuang, L. The Studies of Infiltration Characteristics on Sandy Saline Alkali Soil by Chemical Amelioration. J. Soil Water Conserv. 2014, 28, 31–35. [Google Scholar]
- Tan, S.; Wang, Q.; Xu, D.; Zhang, J.; Shan, Y. Evaluating Effects of Four Controlling Methods in Bare Strips on Soil Temperature, Water, and Salt Accumulation under Film-Mulched Drip Irrigation. Field Crop. Res. 2017, 214, 350–358. [Google Scholar] [CrossRef]
- Liang, J.; Shi, W. Poly-γ-Glutamic Acid Improves Water-Stable Aggregates, Nitrogen and Phosphorus Uptake Efficiency, Water-Fertilizer Productivity, and Economic Benefit in Barren Desertified Soils of Northwest China. Agric. Water Manag. 2021, 245, 106551. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Kostiakov, A.N. On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Trans. Sixth Comm. Int. Soc. Soil Sci. 1932, 1, 7–21. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media. Hydrol. Pap. Colo. State Univ. 1964, 3, 1–25. [Google Scholar]
- Wang, Q.; Horton, R.; Shao, M. Horizontal Infiltration Method for Determining Brooks-Corey Model Parameters. Soil Sci. Soc. Am. J. 2002, 66, 1733–1739. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, M.; Horton, R. A Simple Method for Estimating Water Diffusivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 2004, 68, 713–718. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, Y.; Lan, H.; Zhang, F.; Zhang, H.; Wang, C.; Tan, Y.; Yu, R. Experimental Investigation of the Compactability and Cracking Behavior of Polyacrylamide-Treated Saline Soil in Gansu Province, China. Polymers 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Teo, B.; Chakraborty, A.; Palash, M.L.; Lew, J.H.; Matar, O.K.; Müller, E.A.; Thant, M.; Maung, M.; Luckham, P.F. Adsorption of Hydrolysed Polyacrylamide onto Calcium Carbonate. Polymers 2022, 14, 405. [Google Scholar]
- Güngör, N.; Karaolan, S. Interactions of Polyacrylamide Polymer with Bentonite in Aqueous Systems. Mater. Lett. 2001, 48, 168–175. [Google Scholar] [CrossRef]
- Ning, S.; Jumai, H.; Wang, Q.; Zhou, B.; Su, L.; Shan, Y.; Zhang, J. Comparison of the Effects of Polyacrylamide and Sodium Carboxymethylcellulose Application on Soil Water Infiltration in Sandy Loam Soils. Adv. Polym. Technol. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- López-Maldonado, E.A.; Oropeza-Guzmán, M.T. Nejayote Biopolyelectrolytes Multifunctionality (Glucurono Ferulauted Arabinoxylans) in the Separation of Hazardous Metal Ions from Industrial Wastewater. Chem. Eng. J. 2021, 423, 130210. [Google Scholar] [CrossRef]
- Su, L.; Li, M.; Wang, Q.; Zhou, B.; Shan, Y.; Duan, M.; Ning, S. Algebraic Model for One-Dimensional Horizontal Water Flow with Arbitrary Initial Soil Water Content. Soil Res. 2021, 59, 511–524. [Google Scholar] [CrossRef]
- Su, L.; Yang, X.; Wang, Q.; Qin, X.; Zhou, B.; Shan, Y. Functional Extremum Solution and Parameter Estimation for One-Dimensional Vertical Infiltration Using the Brooks-Corey Model. Soil Sci. Soc. Am. J. 2018, 82, 1319–1332. [Google Scholar] [CrossRef]
- Liang, J.; Xing, X.; Gao, Y. A Modified Physical-Based Water-Retention Model for Continuous Soil Moisture Estimation during Infiltration: Experiments on Saline and Non-Saline Soils. Arch. Agron. Soil Sci. 2020, 66, 1344–1357. [Google Scholar] [CrossRef]
- Ma, D.H.; Shao, M.A.; Zhang, J.B.; Wang, Q.J. Validation of an Analytical Method for Determining Soil Hydraulic Properties of Stony Soils Using Experimental Data. Geoderma 2010, 159, 262–269. [Google Scholar] [CrossRef]
Soil Depth (cm) | PAM Dosages (%) | ||
---|---|---|---|
0.02 | 0.04 | 0.06 | |
0–10 | 12.59 | 14.72 | 12.36 |
10–20 | 16.82 | 21.37 | 15.04 |
20–30 | 20.66 | 28.36 | 16.50 |
PAM Dosages | Philip Model | Kostiakov Model | |||
---|---|---|---|---|---|
Soil Sorption Rate S (cm/min0.5) | Determination Coefficient R2 | Empirical Coefficient λ | Empirical Index β | Determination Coefficient R2 | |
0 | 0.742 | 0.986 | 0.625 | 0.460 | 0.985 |
0.02% | 0.635 | 0.985 | 0.561 | 0.475 | 0.986 |
0.04% | 0.547 | 0.988 | 0.502 | 0.484 | 0.983 |
0.06% | 0.600 | 0.984 | 0.532 | 0.476 | 0.984 |
Formula | Parameter | PAM Dosages (%) | |||
---|---|---|---|---|---|
0 | 0.02 | 0.04 | 0.06 | ||
I = A1xf | A1 | 0.287 | 0.286 | 0.312 | 0.285 |
R2 | 0.994 | 0.996 | 0.997 | 0.996 | |
i = A2/xf | A2 | 1.066 | 0.682 | 0.634 | 0.640 |
R2 | 0.996 | 0.995 | 0.995 | 0.994 |
PAM Dosages (%) | Parameters | ||
Intake Suction hd | Shape Coefficient n | Empirical Coefficient m | |
0 | 83.23 | 0.572 | 3.503 |
0.02 | 71.33 | 0.634 | 3.438 |
0.04 | 106.1 | 0.548 | 3.563 |
0.06 | 88.09 | 0.621 | 3.551 |
Parameter | PAM Dosages (%) | |||
0 | 0.02 | 0.04 | 0.06 | |
Soil saturated water diffusivity Ds | 0.075 | 0.056 | 0.046 | 0.051 |
Parameter L | 2.061 | 1.491 | 2.333 | 1.596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Q.; Mu, W.; Wei, K.; Guo, Y.; Sun, Y. Experimental Investigation of the Different Polyacrylamide Dosages on Soil Water Movement under Brackish Water Infiltration. Polymers 2022, 14, 2495. https://doi.org/10.3390/polym14122495
Zhang J, Wang Q, Mu W, Wei K, Guo Y, Sun Y. Experimental Investigation of the Different Polyacrylamide Dosages on Soil Water Movement under Brackish Water Infiltration. Polymers. 2022; 14(12):2495. https://doi.org/10.3390/polym14122495
Chicago/Turabian StyleZhang, Jihong, Quanjiu Wang, Weiyi Mu, Kai Wei, Yi Guo, and Yan Sun. 2022. "Experimental Investigation of the Different Polyacrylamide Dosages on Soil Water Movement under Brackish Water Infiltration" Polymers 14, no. 12: 2495. https://doi.org/10.3390/polym14122495
APA StyleZhang, J., Wang, Q., Mu, W., Wei, K., Guo, Y., & Sun, Y. (2022). Experimental Investigation of the Different Polyacrylamide Dosages on Soil Water Movement under Brackish Water Infiltration. Polymers, 14(12), 2495. https://doi.org/10.3390/polym14122495