Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
3.1. Polymerization Kinetics
3.2. Molecular Topology during the Polymerization Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fetters, L.J.; Kiss, A.D.; Pearson, D.S.; Quack, G.F.; Vitus, F.J. Rheological behavior of star-shaped polymers. Macromolecules 1993, 26, 647–654. [Google Scholar] [CrossRef]
- Grest, G.S.; Fetters, L.J.; Huang, J.S.; Richter, D. Star polymers: Experiment, theory, and simulation. Adv. Chem. Phys. 1996, 94, 67–163. [Google Scholar]
- Vlassopoulos, D.; Fytas, G.; Pakula, T.; Roovers, J. Multiarm star polymers dynamics. J. Phys. Condens. Matter 2001, 13, R855–R876. [Google Scholar] [CrossRef]
- Seo, S.E.; Hawker, C.J. The beauty of branching in polymer science. Macromolecules 2020, 53, 3257–3261. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Li, J. Star polymers: Advances in biomedical applications. Prog. Polym. Sci. 2015, 46, 55–85. [Google Scholar] [CrossRef]
- Likos, C.N. Soft matter with soft particles. Soft Matter 2006, 2, 478–498. [Google Scholar] [CrossRef]
- Gao, H.F.; Matyjaszewski, K. Structural control in ATRP synthesis of star polymers using the arm-first method. Macromolecules 2006, 39, 3154–3160. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators. Macromolecules 2007, 40, 399–401. [Google Scholar] [CrossRef]
- Gao, H.; Ohno, S.; Matyjaszewski, K. Low polydispersity star polymers via cross-linking macromonomers by ATRP. J. Am. Chem. Soc. 2006, 128, 15111–15113. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. Synthesis of star polymers by a new “Core-First” method: Sequential polymerization of cross-linker and monomer. Macromolecules 2008, 41, 1118–1125. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Prog. Polym. Sci. 2009, 34, 317–350. [Google Scholar] [CrossRef]
- Blencowe, A.; Tan, J.F.; Goh, T.K.; Qiao, G.G. Core cross-linked star polymers via controlled radical polymerization. Polymer 2009, 50, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Miasnikova, A.; Matyjaszewski, K. Effect of cross-linker reactivity on experimental gel points during ATRcP of monomer and cross-linker. Macromolecules 2008, 41, 7843–7849. [Google Scholar] [CrossRef]
- Rosselgong, J.; Armes, S.P.; Barton, W.R.S.; Price, D. Synthesis of branched methacrylic copolymers: Comparison between RAFT and ATRP and effect of varying the monomer concentration. Macromolecules 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Liu, J.; Duong, H.; Whittaker, M.R.; Davis, T.P.; Boyer, C. Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications. Macromol. Theory Simul. 2012, 33, 760–766. [Google Scholar] [CrossRef]
- Ren, J.M.; McKenzie, T.G.; Fu, Q.; Wong, E.H.H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T.P.; Boyer, C.; Qiao, G.G. Star polymers. Chem. Rev. 2016, 116, 6743–6836. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. Synthesis of miktoarm star polymers via ATRP using the “in-out” method: Determination of initiation efficiency of star macroinitiators. Macromolecules 2006, 39, 7216–7223. [Google Scholar] [CrossRef]
- Li, W.; Matyjaszewski, K. Star polymers via cross-linking amphiphilic macroinitiators by AGET ATRP in aqueous media. J. Am. Chem. Soc. 2009, 131, 10378–10379. [Google Scholar] [CrossRef]
- Li, W.; Yoon, J.A.; Zhong, M.; Matyjaszewski, K. Atom Transfer Radical Copolymerization of monomer and cross-linker under highly dilute conditions. Macromolecules 2011, 44, 3270–3275. [Google Scholar] [CrossRef]
- Rosselgong, J.; Armes, S.P. Quantification of intramolecular cyclization in branched copolymers by 1H NMR spectroscopy. Macromolecules 2012, 45, 2731–2737. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Li, W.; Matyjaszewski, K. Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and Flory-Stockmayer (FS) model. Polymer 2011, 52, 5092–5101. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Modeling of branching and gelation in living copolymerization of monomer and divinyl cross-linker using dynamic lattice liquid model (DLL) and Flory-Stockmayer model. Polymer 2010, 51, 6084–6092. [Google Scholar] [CrossRef]
- Freire, J.J. Conformational properties of branched polymers: Theory and simulations. Adv. Polym. Sci. 1999, 143, 35–112. [Google Scholar]
- Mavrantzas, V.G. Using Monte Carlo to simulate complex polymer systems: Recent progress and outlook. Front. Phys. 2021, 9, 661367. [Google Scholar] [CrossRef]
- Hsu, H.-P.; Nadler, W.; Grassberger, P. Scaling of star polymers with 1–80 arms. Macromolecules 2004, 37, 4658–4663. [Google Scholar] [CrossRef] [Green Version]
- Dasmahapatra, A.K.; Reddy, G.K. Conformational transition of telechlic star polymers. Polymer 2013, 54, 2392–2400. [Google Scholar] [CrossRef]
- Huissmann, S.; Blaak, R.; Likos, C.N. Star polymers in solvents of varying quality. Macromolecules 2009, 42, 2806–2816. [Google Scholar] [CrossRef]
- Holler, S.; Moreno, A.J.; Zamponi, M.; Bacova, P.; Willner, L.; Iatrou, H.; Falus, P.; Richter, D. The role of the functionality in the branch point motion in symmetric star polymers: A combined study by simulations and neutron spin echo spectroscopy. Macromolecules 2018, 51, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Chremos, A.; Glynos, E.; Green, P.F. Structure and dynamics intra-molecular heterogenity od star polymer melts above glass transition temperature. J. Chem. Phys. 2015, 142, 044901. [Google Scholar] [CrossRef]
- Grest, G.S.; Kremer, K.; Witten, T.A. Structure of many-arm star polymers—A Molecular-Dynamics simulation. Macromolecules 1987, 20, 1376–1383. [Google Scholar] [CrossRef]
- Grest, G.S. Structure of many-arm star polymers in solvents of varying quality—A Molecular-Dynamics study. Macromolecules 1994, 27, 3493–3500. [Google Scholar] [CrossRef]
- Pakula, T. Static and dynamic properties of computer simulated melts of multiarm polymer stars. Comput. Theor. Polym. Sci. 1998, 8, 21–30. [Google Scholar] [CrossRef]
- Radke, W. Simulation of GPC-distribution coefficients of linear and star-shaped molecules in spherical pores. Macromol. Theory Simul. 2001, 10, 668–675. [Google Scholar] [CrossRef]
- Radke, W.; Gerber, J.; Wittmann, G. Simulation of GPC-distribution coefficients of linear and star-shaped molecules in spherical pores. 2. Comparison of simulation and experiment. Polymer 2003, 44, 519–525. [Google Scholar] [CrossRef]
- Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294–324. [Google Scholar] [CrossRef]
- Tomalia, D.A. Dendrons/Dendrimers: Quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 2009, 6, 456–474. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Frechet, J.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2719–2728. [Google Scholar] [CrossRef]
- Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molecular architecture: A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112, 7638–7647. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Christensen, J.B.; Boas, U. Dendrimers, Dendrons and dendritic Polymers: Discovery, Applications, and the Future; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Patri, A.K.; Majoros, I.J.; Baker, J.R. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 2002, 6, 466–471. [Google Scholar] [CrossRef]
- Hourani, R.; Kakkar, A. Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun. 2010, 31, 947–974. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K. Functional dendrimers, hyperbranched and stars polymers. Prog. Polym. Sci. 2000, 25, 453–471. [Google Scholar] [CrossRef]
- Maiti, P.M.; Çağın, T.; Wang, G.; Goddard, W.A., III. Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules 2004, 37, 6236–6254. [Google Scholar] [CrossRef]
- Pilkington, G.A.; Pedersen, J.S.; Briscoe, W.H. Dendrimer nanofluids in the concentrated regime: From polymer melts to soft spheres. Langmuir 2015, 31, 3333–3342. [Google Scholar] [CrossRef]
- Frechet, J.M.J. Functional polymers and sendrimers: Reactivity, molecular architecture, and interfacial energy. Science 1994, 263, 1710–1715. [Google Scholar] [CrossRef]
- Mourey, T.H.; Turner, S.R.; Rubinstein, M.; Frechet, J.M.J.; Hawker, C.J.; Wooley, K.L. Unique behavior of dendritic macromolecules: Intrinsic viscosity of polyether Dendrimers. Macromolecules 1992, 25, 2401–2406. [Google Scholar] [CrossRef]
- Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 1999, 99, 1665–1688. [Google Scholar] [CrossRef]
- La Ferla, R. Conformations and dynamics of dendrimers and cascade macromolecules. J. Chem. Phys. 1997, 106, 688–700. [Google Scholar] [CrossRef]
- Sheng, Y.J.; Jiang, S.Y.; Tsao, H.K. Radial size of a starburst dendrimer in solvents of varying quality. Macromolecules 2002, 35, 7865–7868. [Google Scholar] [CrossRef]
- Likos, C.N.; Ballauff, M. Equilibrium structure of dendrimer: Results and open questions. Top. Curr. Chem. 2005, 245, 239–252. [Google Scholar]
- Ballauff, M.; Likos, C.N. Dendrimers in solution: Insight from theory and simulation. Angew. Chem. Int. Ed. 2004, 43, 2998–3020. [Google Scholar] [CrossRef] [PubMed]
- Giupponi, G.; Buzza, D.M.A. Monte Carlo simulation of dendrimers in variable solvent quality. J. Chem. Phys. 2004, 120, 10290–10298. [Google Scholar] [CrossRef] [PubMed]
- Kłos, J.S.; Sommer, J.U. Properties of dendrimers with flexible spacer-chains: A Monte Carlo study. Macromolecules 2009, 42, 4878–4886. [Google Scholar] [CrossRef]
- Wawrzyńska, E.; Eisenhaber, S.; Parzuchowski, P.; Sikorski, A.; Zifferer, G. Simulation of hyperbranched polymers. 1. Properties of regular three generation dendrimers. Macromol. Theory Simul. 2014, 23, 288–299. [Google Scholar] [CrossRef]
- Wawrzyńska, E.; Sikorski, A.; Zifferer, G. Monte Carlo simulation studies of regular and irregular dendritic polymers. Macromol. Theory Simul. 2015, 24, 477–489. [Google Scholar] [CrossRef]
- Romiszowski, P.; Sikorski, A. Shape of star-branched polymers at various solvent conditions. A computer simulation study. J. Chem. Phys. 1998, 109, 6169–6174. [Google Scholar] [CrossRef]
- Sikorski, A. Properties of star-branched polymer chains. The application of the Replica Exchange Monte Carlo method. Macromolecules 2002, 35, 7132–7137. [Google Scholar] [CrossRef]
- Sikorski, A. Monte Carlo study of the collapse transition of flexible and semiflexible star-branched polymers. Polymer 1993, 34, 1271–1281. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Synthesis of star polymers by “core-first” one-pot method via ATRP: Monte Carlo simulations. Polymer 2014, 55, 2552–2561. [Google Scholar] [CrossRef]
- Tian, W.D.; Ma, Y.Q. Coarse-grained molecular simulation of interacting dendrimers. Soft Matter 2011, 7, 500–505. [Google Scholar] [CrossRef]
- Kanchi, S.; Suresh, S.; Priyakumar, U.D.; Ayappa, K.G.; Maiti, P.K. Molecular Dynamics study of the structure, flexibility, and hydrophilicity of PETIM dendrimers: A comparison with PAMAM dendrimers. J. Phys. Chem. B 2015, 119, 12990–13001. [Google Scholar] [CrossRef] [PubMed]
- Karatasos, K.; Adolf, D.B.; Davies, G.R. Statics and dynamics of model dendrimers as studied by Molecular Dynamics simulations. J. Chem. Phys. 2001, 115, 5310–5318. [Google Scholar] [CrossRef] [Green Version]
- Kurbatov, A.O.; Balabaev, N.K.; Mazo, M.A.; Kramarenko, E.Y. Molecular Dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups. J. Chen. Phys. 2018, 148, 014902. [Google Scholar] [CrossRef] [PubMed]
- Markelov, D.A.; Shishkin, A.N.; Matveev, V.V.; Penkova, A.V.; Lähderanta, E.; Chizhik, V.I. Orientational mobility in dendrimer melts: Molecular Dynamics simulations. Macromolecules 2018, 49, 9247–9257. [Google Scholar] [CrossRef]
- Khabaz, F.; Khare, R. Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: A molecular simulation study. J. Chem. Phys. 2014, 141, 214904. [Google Scholar] [CrossRef]
- Mansfield, M.L.; Klushin, L.I. Monte Carlo studies of dendrimer macromolecules. Macromolecules 1993, 26, 4262–4268. [Google Scholar] [CrossRef]
- Timoshenko, E.G.; Kuznetsov, Y.A.; Connolly, R. Conformations of dendrimers in dilute solution. J. Chem. Phys. 2002, 117, 9050–9062. [Google Scholar] [CrossRef] [Green Version]
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268–307. [Google Scholar] [CrossRef]
- Mignani, S.; El Kazzouli, S.; Bousmina, M.; Majoral, J.P. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog. Polym. Sci. 2013, 38, 993–1008. [Google Scholar] [CrossRef]
- Polanowski, P.; Pakula, T. Studies of polymer conformation and dynamics in two dimensions using simulations based on the Dynamic Lattice Liquid (DLL) model. J. Chem. Phys. 2002, 117, 4022–4029. [Google Scholar] [CrossRef]
- Hałagan, K.; Banaszak, M.; Jung, J.; Polanowski, P.; Sikorski, A. The structure of opposing polymer brushes. Polymers 2021, 13, 4294. [Google Scholar] [CrossRef] [PubMed]
- Pakula, T. Simulation on the completely occupied lattices. In Simulation Methods for Polymers; Kotelyanskii, M., Theodorou, D.N., Eds.; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2004. [Google Scholar]
- von Smoluchowski, M. Versuch einer Mathematischen Theorie der Koagulations Kinetic Kolloider Lousungen. Phys. Z. Chem. 1917, 92, 129–168. [Google Scholar]
- Jullien, R.; Botet, R. Aggregation and Fractal Aggregate; World Scientific: Singapore, 1987. [Google Scholar]
- Tirado-Miranda, M.; Schmitt, A.; Callejas-Fernández, J.; Frenández-Barbero, A. Dynamic scaling and fractal structure of small colloidal clusters. Colloids Surf. A 2000, 162, 67–73. [Google Scholar] [CrossRef]
- Van Dongen, P.; Ernst, M.H. Dynamic scaling in the kinetics of clustering. Phys. Rev. Lett. 1985, 54, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Krys, P.; Matyjaszewski, K. Kinetics of Atom Transfer Radical Polymerization. Eur. Polym. J. 2017, 89, 482–523. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, J.; Gaspari, G. The asphericity of random walks. J. Phys. A Math. Gen. 1986, 19, L191–L193. [Google Scholar] [CrossRef]
- Daoud, M.; Cotton, J.P. Star shaped polymers: A model for the conformation and its concentration dependence. J. Phys. 1982, 43, 531–538. [Google Scholar] [CrossRef]
- Teraoka, I. Polymer Solutions: An Introduction to Physical Properties; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Peng, X.; Cheng, L.; Jiang, B.; Ji, S.; Shen, X.-C.; Williams, D.R.M. The branching angle effect on the properties of rigid dendrimers studied by Monte Carlo simulation. J. Mol. Model. 2021, 27, 144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanowski, P.; Hałagan, K.; Sikorski, A. Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations. Polymers 2022, 14, 2522. https://doi.org/10.3390/polym14132522
Polanowski P, Hałagan K, Sikorski A. Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations. Polymers. 2022; 14(13):2522. https://doi.org/10.3390/polym14132522
Chicago/Turabian StylePolanowski, Piotr, Krzysztof Hałagan, and Andrzej Sikorski. 2022. "Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations" Polymers 14, no. 13: 2522. https://doi.org/10.3390/polym14132522
APA StylePolanowski, P., Hałagan, K., & Sikorski, A. (2022). Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations. Polymers, 14(13), 2522. https://doi.org/10.3390/polym14132522