Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Microhardness Measurement
- P is the applied load [g]
- d is the diagonal of the impression [µm].
2.2.3. Compressive Strength and Elastic Modulus Measurement
- F is the highest applied load recorded during sample compression [N]
- A is the initial cross-sectional area of a sample [mm2].
- is the stress increment for the assumed range of the relative shortening of a sample,
- is the relative change of a sample’s height
2.2.4. Flexural Strength Measurements
- F is the maximum applied load at the time of sample destruction [N],
- L is the distance between supports [mm],
- B is the width of the cross-section of a sample [mm],
- h is the height of the cross-section of a sample [mm].
2.2.5. Diametral Tensile Strength
- F is the highest applied load recorded during sample compression [N],
- d is the diameter of the examined sample [mm],
- h is the thickness of the examined sample [mm].
2.2.6. Statistical Analysis
3. Results
3.1. Microhardness
3.2. Compressive Strength
3.3. Elastic Modulus
3.4. Flexural Strength
3.5. Diametral Tensile Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Magne, P.; Razaghy, M.; Carvalho, M.; Soares, L. Luting of inlays, onlays, and overlays with preheated restorative composite resin does not prevent seating accuracy. Int. J. Esthet. Dent. 2018, 13, 318–332. [Google Scholar] [PubMed]
- D’Arcangelo, C.; Vanini, L.; Casinelli, M.; Frascaria, M.; De Angelis, F.; Vadini, M.; D’Amario, M. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review. Compend. Contin. Educ. Dent. 2015, 36, 570–577. [Google Scholar] [PubMed]
- Bachanek, T.; Misiakowska, E. Changes in composition and properties of selected composite materials. Review of the literature. Dent. Mag. 2014, 25, 104–109. [Google Scholar]
- Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements-The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials Guidance-Resin Composites: Part I-Mechanical Properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Tomaselli, L.; Oliveira, D.; Favarao, J.; Silva, A.; Pires-de-Souza, F.; Geraldeli, S.; Sinhoreti, M.A.C. Influence of Pre-Heating Regular Resin Composites and Flowable Composites on Luting Ceramic Veneers with Different Thicknesses. Braz. Dent. J. 2019, 30, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calheiros, F.; Daronch, M.; Rueggeberg, F.; Braga, R. Effect of temperature on composite polymerization stress and degree of conversion. Dent. Mater. 2014, 30, 613–618. [Google Scholar] [CrossRef]
- Magne, P.; Schlichting, L.; Paranhos, M. Risk of onlay fracture during pre-cementation functional occlusal tapping. Dent. Mater. 2011, 27, 942–947. [Google Scholar] [CrossRef]
- Mundim, F.; Garcia, L.; Cruvinel, D.; Lima, F.; Bachmann, L.; Pires-de-Souza, F. Color stability, opacity and degree of conversion of pre-heated composites. J. Dent. 2011, 39 (Suppl. S1), e25–e29. [Google Scholar] [CrossRef]
- Liu, X.; Huang, L.; Qian, K. Nanomaterial-Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. Adv. NanoBiomed Res. 2021, 1, 2000104. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang z Huang, X.; Huang, W. Hydrogel-based composites: Unilimited platforms for biosensors and diagnostics. View 2021, 2, 20200165. [Google Scholar] [CrossRef]
- Hashemikamangar, S.; Meymand, M.; Kharazifard, M.; Valizadeh, S. Surface microhardness of a self-adhesive composite in comparison with conventional composite resins. Dent. Med. Probl. 2020, 57, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Greig, V. Craig’s Restorative Dental Materials, 13th ed.; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Jafarzadeh-Kashi, T.; Fereidouni, F.; Khoshroo, K.; Heidari, S.; Masaeli, R.; Mohammadian, M. Effect of Preheating on the Microhardness of Nanohybrid Resin-based Composites. Biomed. Technol. 2015, 2, 15–22. [Google Scholar]
- Cierech, M.; Osica, I.; Kolenda, A.; Wojnarowicz, J.; Szmigiel, D.; Lojkowski, W.; Kurzydłowski, K.; Ariga, K.; Mierzwińska-Nastalska, E. Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases. Nanomaterials 2018, 8, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkaffas, A.; Eltoukhy, R.; Elnegoly, S.; Mahmoud, S. The effect of preheating resin composites on surface hardness: A systematic review and meta-analysis. Restor. Dent. Endod. 2019, 44, e41. [Google Scholar] [CrossRef] [Green Version]
- Ayub, K.V.; Santos, G.; Rizkalla, A.S.; Bohay, R.; Pegoraro, L.F.; Rubo, J.H.; Santos, M.J. Effect of preheating on microhardness and viscosity of 4 resin composites. J. Can. Dent. Assoc. 2014, 80, e12. [Google Scholar]
- Bojar, W.; Karczewicz, A.; Kobyłecki, W. Young’s Modulus and Compressive Strength of Chosen Posterior Restoratives. Comparison and Model Analysis; National Medicines Institute: Warsaw, Poland, 2001. [Google Scholar]
- Ye, Y.; Di, P.; Jia, S.; Lin, Y. Occlusal force and its distribution in the position of maximum intercuspation in individual normal occlusion: A cross-sectional study. Zhonghua Kou Qiang Yi Xue Za Zhi 2015, 50, 536–539. [Google Scholar]
- Żuławnik, A.; Rączkiewicz, M. Effect of the temperature increase of composite materials on the quality of adhesive cementation—Review of literature. Prosthodontics 2019, 69, 437–443. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; De Angelis, F.; Vadini, M.; D’Amario, M. Clinical evaluation on porcelain laminate veneers bonded with light-cured composite: Results up to 7 years. Clin. Oral. Investig. 2012, 16, 1071–1079. [Google Scholar] [CrossRef]
- Nada, K.; El-Mowafy, O. Effect of precuring warming on mechanical properties of restorative composites. Int. J. Dent. 2011, 2011, 536212. [Google Scholar] [CrossRef]
- Kim, A.-R.; Jeon, Y.-C.; Jeong, C.-M.; Yun, M.-J.; Choi, J.W.; Kwon, Y.; Huh, J.-B. Effect of activation modes on the compressive strength, diametral tensile strength and microhardness of dual-cured self-adhesive resin cements. Dent. Mater. J. 2016, 35, 298–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podlewska, M.; Półtorak, K.; Sokołowski, J.; Łukomska-Szymańska, M. Evaulation methods of mechanical parameters of composite materials. Pol. Engl. J. Dent. 2015, 14, 92–98. [Google Scholar]
- Sokołowska, J.; Domarecka, M.; Sokołowski, J. Influence of Polymerization Temperature on Durability of Dental Composites. Dent. Med. Probl. 2010, 47, 153–159. [Google Scholar]
- Sokołowski, G.; Konieczny, B.; Bociong, K.; Sokołowski, J. Comparative evaluation of the mechanical properties of resin, self-adhesive and adhesive cements. Prosthodontics 2018, 68, 415–424. [Google Scholar] [CrossRef]
- Oguri, M.; Yoshida, Y.; Yoshihara, K.; Miyauchi, T.; Nakamura, Y.; Shimoda, S.; Hanabusa, M.; Momoi, Y.; van Meerbeek, B. Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta Biomater. 2012, 8, 1928–1934. [Google Scholar] [CrossRef]
- Sharafeddin, F.; Motamedi, M.; Fattah, Z. Effect of Preheating and Precooling on the Flexural Strength and Modulus of Elasticity of Nanohybrid and Silorane-based Composite. J. Dent. (Shiraz) 2015, 16, 224–229. [Google Scholar]
- Mohammadi, N.; Navimipour, E.J.; Kimyai, S.; Ajami, A.A.; Bahari, M.; Ansarin, M. Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites. J. Clin. Exp. Dent. 2016, 8, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, 51–59. [Google Scholar] [CrossRef]
- Jun, S.; Kim, D.; Goo, H.; Lee, H. Investigation of the correlation between the different mechanical properties of resin composites. Dent. Mater. J. 2013, 32, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Cierech, M.; Szczypińska, A.; Wróbel, K. Comparative analysis of the roughness of acrylic resin materials used in the process of making the bases of dentures and investigation of adhesion of Candida albicans to them. In vitro study. Dent. Med. Probl. 2013, 50, 341–347. [Google Scholar]
- D’Amario, M.; Pacioni, S.; Capogreco, M.; Gatto, R.; Baldi, M. Effect of repeated preheating cycles on flexural strength of resin composites. Oper. Dent. 2013, 38, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Rojpaibool, T.; Leevailoj, C. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses. J. Prosthodont. 2017, 26, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Miyazaki, M.; Inage, H.; Kurokawa, H. Determination of elastic modulus of the components at dentin-resin interface using the ultrasonic device. Dent. Mater. J. 2004, 23, 361–367. [Google Scholar] [CrossRef] [Green Version]
- D’Amario, M.; De Angelis, F.; Vadini, M.; Marchili, N.; Mummolo, S.; D’Arcangelo, C. Influence of a repeated preheating procedure on mechanical properties of three resin composites. Oper. Dent. 2015, 40, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Classification | Composition | Total Content of Filler |
---|---|---|---|
Enamel Plus Hri | Microhybrid composite material | UDMA, Bis-GMA, 1,4-butandioldimethacrylate; Glass filler, highly dispersed, silicone dioxide | 80% by weight 63% by volume |
Rely X U200 | Dual-cured self-adhesive composite cement | Bis-phenol-A-bis-(2-hydroxy-3-methacryloxypropyl)ether (Bis-GMA), Triethylenglycodimethacrylate (TEGDMA) Silanized glass and silica filler; Initiator system: sodium p-toluen sulfinate, camphorquinone; | 43% by volume |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skapska, A.; Komorek, Z.; Cierech, M.; Mierzwinska-Nastalska, E. Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material. Polymers 2022, 14, 2686. https://doi.org/10.3390/polym14132686
Skapska A, Komorek Z, Cierech M, Mierzwinska-Nastalska E. Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material. Polymers. 2022; 14(13):2686. https://doi.org/10.3390/polym14132686
Chicago/Turabian StyleSkapska, Anastazja, Zenon Komorek, Mariusz Cierech, and Elzbieta Mierzwinska-Nastalska. 2022. "Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material" Polymers 14, no. 13: 2686. https://doi.org/10.3390/polym14132686
APA StyleSkapska, A., Komorek, Z., Cierech, M., & Mierzwinska-Nastalska, E. (2022). Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material. Polymers, 14(13), 2686. https://doi.org/10.3390/polym14132686