Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparations
2.3. Tests and Measurements
3. Results and Discussion
3.1. Lignin Characterization
3.2. Lignin as Cationic Surfactants of Model Emulsions
3.3. Formulation of Lignin-Based Cationic Bituminous Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolker, I.H. Natural and Synthetic Polymers: An Introduction; Marcel Dekker, Inc.: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruíz-Dueñas, J.; Martínez, M.J.; Del Río, J.C.; Gutiérrez, A. Enzymatic delignification of plant cell wall: From nature to mill. Curr. Opin. Biotechnol. 2009, 20, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz, P.F.; Marita, J.M.; Hadfield, R.D.; Ralph, S.A.; Christensen, J.H. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 2004, 3, 29–60. [Google Scholar] [CrossRef]
- Tejado, A.; Pena, C.; Labidi, J.; Echeverria, J.; Mondragon, I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 2007, 98, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Mikkonen, K.S. Strategies for structuring diverse emulsion systems by using wood lignocellulose-derived stabilizers. Green Chem. 2020, 22, 1019–1037. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, A.; Pereira, H. Compositional Variability of Lignin in Biomass, Lignin—Trends and Applications, Matheus Poletto; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.I.; Fillat, Ú.; Martín-Sampedro, R.; Eugenio, M.E.; Negro, M.J.; Ballesteros, I.; Rodríguez, A.; Ibarra, D. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. Int. J. Biol. Macromol. 2017, 105, 238e251. [Google Scholar] [CrossRef]
- Martín-Sampedro, R.; Santos, J.I.; Fillat, Ú.; Wicklein, B.; Eugenio, M.E.; Ibarra, D. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. Int. J. Biol. Macro. 2019, 126, 18–29. [Google Scholar] [CrossRef]
- Carvajal, J.C.; Gómez, Á.; Cardona, C.A. Comparison of lignin extraction processes: Economic and environmental assessment. Bioresour. Technol. 2016, 214, 468–476. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crop. Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Brännvall, E. Overview of pulp and paper processes. In Pulping Chemistry and Technology; Ek, M., Gellerstedt, G., Henriksson, G., Eds.; De Gruyter: Berlin, Germany; New York, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Ľudmila, H.; Michal, J.; Andrea, Š.; Aleš, H. Lignin, potential products and their market value. Wood Res. 2015, 60, 973–986. [Google Scholar]
- Susmozas, A.; Martín-Sampedro, R.; Eugenio, M.E.; Iglesias, R.; Manzanares, P.; Moreno, A.D. Process strategies for the transition of 1G to advanced bioethanol production. Processes 2020, 8, 1310. [Google Scholar] [CrossRef]
- Martín-Sampedro, R.; Santos, J.I.; Eugenio, M.E.; Wicklein, B.; Jiménez-López, L.; Ibarra, D. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Int. J. Biol. Macromol. 2019, 140, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, J.; Lindström, M.E. Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Ind. Crop. Prod. 2014, 52, 729–735. [Google Scholar] [CrossRef]
- Lesueur, D. Polymer Modified Bitumen Emulsions (PMBEs), Polymer Modified Bitumen; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Yuliestyan, A.; García-Morales, M.; Moreno, E.; Carrera, V.; Partal, P. Assessment of modified lignin cationic emulsifier for bitumen emulsions used in road paving. Mater. Des. 2017, 131, 242–251. [Google Scholar] [CrossRef]
- Yuliestyan, A.; Gavet, T.; Marsac, P.; García-Morales, M.; Partal, P. Sustainable asphalt mixes manufactured with reclaimed asphalt and modified-lignin-stabilized bitumen emulsions. Constr. Build. Mater. 2018, 173, 662–671. [Google Scholar] [CrossRef]
- Read, J.; Whiteoak, D. The Shell Bitumen Handbook, 5th ed.; Thomas Teldford Publishing: London, UK, 2003. [Google Scholar] [CrossRef]
- Ronald, M.; Luis, F.P. Asphalt emulsions formulation: State-of-the-art and dependency of formulation on emulsions properties. Constr. Build. Mater. 2016, 123, 162–173. [Google Scholar] [CrossRef]
- Mannich, C.; Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. 1912, 250, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J. Mannich reaction. In Name Reactions; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Landa, P.A.; Gosselink, R.J.A. Lignin-Based Bio-Asphalt. Patent WO 2019/092278, 16 May 2019. [Google Scholar]
- Jiménez-López, L.; Martín-Sampedro, R.; Eugenio, M.E.; Santos, J.I.; Sixto, H.; Cañellas, I.; Ibarra, D. Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops. Wood Sci. Technol. 2020, 54, 1617–1643. [Google Scholar] [CrossRef]
- Franco, J.M.; Gallegos, C.; Barnes, H.A. On Slip Effects in Steady-State Flow Measurements of Oil-in-Water Food Emulsions. J. Food Eng. 1998, 36, 89–102. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Berlin, A.; Balakshin, M.; Gilkes, N.; Kadla, J.; Maximenko, V.; Kubo, S. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 2006, 125, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Alekhina, M.; Ershova, O.; Ebert, A.; Heikkinen, S.H. Sixta Softwood kraft lignin for value-added applications: Fractionation and structural characterization. Ind. Crop. Prod. 2015, 66, 220–228. [Google Scholar] [CrossRef]
- dos Santos, P.S.B.; Erdocia, X.; Gatto, D.A.; Labidi, J. Characterisation of Kraft lignin separated by gradient acid precipitation. Ind. Crop. Prod. 2014, 55, 149–154. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Abächerli, A.; Semke, H.; Malherbe, R.; Käuper, P.; Nadif, A.; van Dama, J.E.G. Analytical protocols for characterisation of sulphur-free lignin. Ind. Crop. Prod. 2004, 19, 271–281. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Gandini, A. Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Collins, M.N.; Nechifor, M.; Tanasă, F.; Zănoagă, M.; McLoughlin, A.; Stróżyk, M.A.; Culebras, M.; Teacă, C.-A. Valorization of lignin in polymer and composite systems for advanced engineering applications—A review. Int. J. Biol. Macromol. 2019, 131, 828–849. [Google Scholar] [CrossRef]
- Yasuda, S.; Fukushima, K.; Kakehi, A. Formation and chemical structures of acid-soluble lignin I: Sulfuric acid treatment time and acid-soluble lignin content of hardwood. J. Wood. Sci. 2001, 47, 69–72. [Google Scholar] [CrossRef]
- del Río, J.C.; Gutiérrez, A.; Rodríguez, I.M.; Ibarra, D.; Martínez, A.T. Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J. Anal. Appl. Pyrolysis 2007, 79, 39–46. [Google Scholar] [CrossRef]
- Ibarra, D.; Chávez, M.I.; Rencoret, J.; del Río, J.C.; Gutiérrez, A.; Romero, J.; Camarero, S.; Martínez, M.J.; Jiménez-Barbero, J.; Martínez, A.T. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine free bleaching: A two-dimensional nuclear magnetic resonance, fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J. Agric. Food Chem. 2007, 55, 3477–3490. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, D.; del Río, J.C.; Gutiérrez, A.; Rodríguez, I.M.; Romero, J.; Martínez, M.J.; Martínez, A.T. Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme Microb. Technol. 2004, 35, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.I.; Martín-Sampedro, R.; Fillat, Ú.; Oliva, J.M.; Negro, M.J.; Ballesteros, M.; Eugenio, M.E.; Ibarra, D. Evaluating lignin-rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D-NMR. Int. J. Pol. Science. 2015, 2015, 314891. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.I.; Fillat, Ú.; Martín-Sampedro, R.; Ballesteros, I.; Manzanares, P.; Ballesteros, M.; Eugenio, M.E.; Ibarra, D. Lignin-enriched fermentation residues from bioethanol production of fast growing poplar and forage sorghum. Bioresources 2015, 10, 5215–5232. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, X.; An, L.; Xu, C. A novel cationic lignin-amine emulsifier with high performance reinforced via phenolation and Mannich reactions. BioResources 2016, 11, 6438–6451. [Google Scholar] [CrossRef] [Green Version]
- Jiao, G.J.; Peng, P.; Sun, S.L.; Geng, Z.C.; She, D. Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer. Int. J. Biol. Macro. 2019, 177, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Eugenio, M.E.; Martín-Sampedro, R.; Santos, J.I.; Wicklein, B.; Martín, J.A.; Ibarra, D. Properties versus application requirements of solubilized lignins from an elm clone during different pre-treatments. Int. J. Biol. Macromol. 2021, 181, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, E. Droplet Size. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Santos, J.; Calero, N.; Guerrero, A.; Muñoz, J. Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocoll. 2015, 44, 109–114. [Google Scholar] [CrossRef]
- Erçelebi, E.A.; Ibanoğlu, E. Rheological properties of whey protein isolate stabilized emulsions with pectin and guar gum. Eur. Food Res. Technol. 2009, 229, 281–286. [Google Scholar] [CrossRef]
Sample | Klason Lignin (wt.%) | Soluble Lignin (wt.%) | Total Lignin (wt.%) | Glucose (wt.%) | Xylose (wt.%) | Arabinose (wt.%) | Ash (wt.%) | Elemental Analysis (wt.%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | ||||||||
KFT | 89.08 | 5.14 | 94.22 | 0.92 | 1.61 | 0.20 | 2.4 | 61.2 | 6.72 | 2.18 | 26.9 | 1.8 |
BIOeth1 | 60.59 | 3.35 | 63.94 | 23.61 | 5.68 | 0.26 | 10.4 | 49.1 | 5.16 | 2.37 | 33.4 | 0.13 |
BIOeth2 | 62.12 | 3.62 | 65.74 | 24.06 | 5.49 | 0.17 | 9.4 | 49.0 | 5.21 | 2.75 | 34.0 | 0.12 |
Sample | Mn (g/mol) | Mw (g/mol) | Polydispersity |
---|---|---|---|
KFT | 5366 | 6248 | 1.164 |
BIOeth1 | 6618 | 7869 | 1.189 |
BIOeth2 | 6878 | 8217 | 1.195 |
Lignin Type | Reaction pH | Oil Conc. (wt.%) | D3,2 (µm) | D4,3 (µm) | ||
---|---|---|---|---|---|---|
Storage Time | Storage Time | |||||
1 Day | 1 Week | 1 Day | 1 Week | |||
BIOeth1 | 13 | 60 | 16.9 | - | 37.3 | - |
BIOeth2 | 13 | 60 | 14.2 | - | 27.4 | - |
KFT | 13 | 60 | 6.8 | - | 9.2 | - |
BIOeth1 | 10 | 70 | 311.9 | - | 376.5 | - |
BIOeth2 | 10 | 70 | 194.3 | - | 207.5 | - |
BIOeth1 | 13 | 70 | 18.7 | 17.3 | 49.7 | 49.3 |
BIOeth2 | 13 | 70 | 12.8 | 12.9 | 31.0 | 32.9 |
KFT | 13 | 70 | 7.3 | 7.8 | 10.0 | 10.5 |
Surfactant Conc. (wt.%) | D3,2 (µm) | D4,3 (µm) | η∞ (Pa s) | k (Pa sn) | n (-) |
---|---|---|---|---|---|
0.25 | 11.7 | 60.9 | 0.014 | 0.06 | 0.29 |
0.50 | 11.4 | 63.7 | 0.013 | 0.06 | 0.27 |
0.75 | 9.1 | 53.9 | 0.018 | 0.07 | 0.23 |
Reagent Molar Ratio (KFT/TEPA/Fd) | D3,2 (µm) | D4,3 (µm) | η∞ (Pa s) | k (Pa sn) | n (-) |
---|---|---|---|---|---|
1/7/7 | 12.20 | 63.84 | 0.019 | 0.05 | 0.25 |
1/14/14 | 9.12 | 53.85 | 0.018 | 0.07 | 0.23 |
1/28/28 | 10.24 | 55.10 | 0.019 | 0.04 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuliestyan, A.; Partal, P.; Navarro, F.J.; Martín-Sampedro, R.; Ibarra, D.; Eugenio, M.E. Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes. Polymers 2022, 14, 2879. https://doi.org/10.3390/polym14142879
Yuliestyan A, Partal P, Navarro FJ, Martín-Sampedro R, Ibarra D, Eugenio ME. Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes. Polymers. 2022; 14(14):2879. https://doi.org/10.3390/polym14142879
Chicago/Turabian StyleYuliestyan, Avido, Pedro Partal, Francisco J. Navarro, Raquel Martín-Sampedro, David Ibarra, and María E. Eugenio. 2022. "Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes" Polymers 14, no. 14: 2879. https://doi.org/10.3390/polym14142879
APA StyleYuliestyan, A., Partal, P., Navarro, F. J., Martín-Sampedro, R., Ibarra, D., & Eugenio, M. E. (2022). Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes. Polymers, 14(14), 2879. https://doi.org/10.3390/polym14142879