Study on the Physical, Thermal and Mechanical Properties of SEBS/PP (Styrene-Ethylene-Butylene-Styrene/Polypropylene) Blend as a Medical Fluid Bag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Blends
2.3. Physical Characterisation
2.4. Optical Characterisation
2.5. X-ray Diffraction (XRD) Characterisation
2.6. Differential Scanning Calorimetry (DSC) Characterisation
2.7. Hardness Characterisation
2.8. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis
3. Results and Discussion
3.1. Mechanical Characterisation
3.2. Optical Analysis
3.3. X-ray Diffraction (XRD) Analysis
3.4. Differential Scanning Calorimetry (DSC) Analysis
3.5. Hardness Analysis
3.6. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; International Federation of Red Cross; Red Crescent Societies. “Towards 100 % Voluntary Blood Donation a Global Framework for Action”, World Health Organization. 2010, p. 123. Available online: https://apps.who.int/iris/handle/10665/44359 (accessed on 9 May 2022).
- National Clinical Guideline Centre (UK). “Blood Transfusion: NICE Guideline NG24”, National Institute for Health and Care Excellence (NICE), Nov. 2015. Available online: https://www.nice.org.uk/guidance/ng24/evidence/full-guideline-pdf-2177160733 (accessed on 9 May 2022).
- Liumbruno, G.M.; Bennardello, F.; Lattanzio, A.; Piccoli, P.L.; Rossetti, G. Recommendations for the transfusion of red blood cells. Blood Transfus. 2008, 7, 49–64. [Google Scholar] [CrossRef]
- Ajili, S.H.; Ebrahimi, N.G.; Khorasani, M.T. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. J. Appl. Polym. Sci. 2003, 89, 2496–2501. [Google Scholar] [CrossRef]
- Ajili, S.H.; Golshan, E.N.; Khorasani, M.T. Studies on TPU/PP Blend and Comparing it with PVC Used as Blood Bag. Iran. Polym. J. 2003, 12, 179–184. [Google Scholar]
- Simmchen, J.; Ventura, R.; Segura, J. Progress in the Removal of Di-[2-Ethylhexyl]-Phthalate as Plasticizer in Blood Bags. Transfus. Med. Rev. 2012, 26, 27–37. [Google Scholar] [CrossRef]
- Romero-Bastida, C.A.; Martín-Polo, M.O.; Velazquez, G.; Torres, J.A. Torres, Effect of Plasticizer, pH and Hydration on the Mechanical and Barrier Properties of Zein and Ethylcellulose Films. Cienc. Tecnol. Aliment. 2004, 4, 251–256. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C.S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Yargeau, Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981 . [Google Scholar] [CrossRef]
- Greiner, T.; Volkmann, A.; Hildenbrand, S.; Wodarz, R.; Perle, N.; Ziemer, G.; Rieger, M.A.; Wendel, H.; Walker, T. DEHP and its active metabolites: Leaching from different tubing types, impact on proinflammatory cytokines and adhesion molecule expression. Is there a subsumable context? Perfusion 2011, 27, 21–29. [Google Scholar] [CrossRef]
- Melzak, K.A.; Uhlig, S.; Kirschhöfer, F.; Brenner-Weiss, G.; Bieback, K. The Blood Bag Plasticizer Di-2-Ethylhexylphthalate Causes Red Blood Cells to Form Stomatocytes, Possibly by Inducing Lipid Flip-Flop. Transfus. Med. Hemother. 2018, 45, 413–422. [Google Scholar] [CrossRef]
- Bicalho, B.; Serrano, K.; Pereira, A.D.S.; Devine, D.V.; Acker, J.P. Blood Bag Plasticizers Influence Red Blood Cell Vesiculation Rate without Altering the Lipid Composition of the Vesicles. Transfus. Med. Hemother. 2015, 43, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Lozano, M.; Cid, J. DEHP plasticizer and blood bags: Challenges ahead. ISBT Sci. Ser. 2013, 8, 127–130. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Nemkov, T.; Hansen, K.C. Rapid detection of DEHP in packed red blood cells stored under European and US standard conditions. Blood Transfus. 2015, 14, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Zarean, M.; Keikha, M.; Poursafa, P.; Khalighinejad, P.; Amin, M.; Kelishadi, R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. Environ. Sci. Pollut. Res. 2016, 23, 24642–24693. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-A.; Tsai, M.-S.; Hou, J.-W.; Lin, C.-L.; Chen, C.-Y.; Chang, C.-H.; Liao, K.-W.; Wang, S.-L.; Chen, B.-H.; Wu, M.-T.; et al. Evidence of high di(2-ethylhexyl) phthalate (DEHP) exposure due to tainted food intake in Taiwanese pregnant women and the health effects on birth outcomes. Sci. Total Environ. 2018, 618, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Tickner, J.A.; Schettler, T.; Guidotti, T.; McCally, M.; Rossi, M. Health Risks Posed by Use of of Di-2-Ethylhexyl Phthalate (DEHP) in PVC Medical Devices: A Critical Review.pdf. Am. J. Ind. Med. 2001, 39, 100–111. [Google Scholar] [CrossRef]
- Ferri, M.; Chiellini, F. Materials Degradation in PVC Medical Devices, DEHP Leaching and Neonatal Outcomes. Curr. Med. Chem. 2010, 17, 2979–2989. [Google Scholar] [CrossRef]
- Mersiowsky, I. Long-term fate PVC in landfills. Prog. Polym. Sci. 2002, 27, 2227. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A.; Jiang, X.; Li, X. Dioxins and polyvinylchloride in combustion and fires. Waste Manag. Res. 2015, 33, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, E.D.S.; Reitano, E.M.; Chhabra, J.S.; Bergen, G.P.; Whyatt, R.M. A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 2011, 31, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Malarvannan, G.; Onghena, M.; Verstraete, S.; van Puffelen, E.; Jacobs, A.; Vanhorebeek, I.; Verbruggen, S.C.; Joosten, K.F.; Berghe, G.V.D.; Jorens, P.G.; et al. Phthalate and alternative plasticizers in indwelling medical devices in pediatric intensive care units. J. Hazard. Mater. 2018, 363, 64–72. [Google Scholar] [CrossRef]
- Xie, M.; Wu, Y.; Little, J.C.; Marr, L.C. Phthalates and alternative plasticizers and potential for contact exposure from children’s backpacks and toys. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Jegrelius, “Blood Bags—A pilot case to stimulate eco-innovation within the healthcare sector”, Jegrelius Institute for Applied Green Chemistry, Östersund, Sweden, Final Report—Vinnova Project Reg. No. 2008-0381, Oct. 2010. Available online: https://pvcfreebloodbag.eu/wp-content/uploads/2013/11/BloodBags_final_report_krcopy.pdf (accessed on 10 May 2022).
- Gulliksson, H.; Meinke, S.; Ravizza, A.; Larsson, L.; Höglund, P. Storage of red blood cells in a novel polyolefin blood container: A pilot in vitro study. Vox Sang. 2016, 112, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lagarón, J.M.; López-Rubio, A.; Fabra, M.J. Poly(L-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J. Appl. Polym. Sci. 2015, 133, 42426. [Google Scholar] [CrossRef]
- Vesna, O.B.; Emi, G.B.; Veljko, F. Compatibilization of thermoplastic polyurethane and polypropylene with a SEBS compatibilizer. Adv. Mater. Res. 2014, 1025, 605–614. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Burbine, S.; Shivaprakash, N.K.; Mead, J. 3D-printable PP/SEBS thermoplastic elastomeric blends: Preparation and properties. Polymers 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Monti, M.; Scrivani, M.T.; Gianotti, V. Effect of SEBS and OBC on the Impact Strength of Recycled Polypropylene/Talc Composites. Recycling 2020, 5, 9. [Google Scholar] [CrossRef]
- Lou, C.-W.; Huang, C.-L.; Pan, Y.-J.; Lin, Z.-I.; Song, X.-M.; Lin, J.-H. Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J. Polym. Res. 2016, 23, 84. [Google Scholar] [CrossRef]
- Tjong, S.C.; Xu, S.A.; Li, R.K.Y.; Mai, Y.W. Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber / SEBS / polypropylene hybrid composites. Compos. Sci. Technol. 2002, 62, 831–840. [Google Scholar] [CrossRef]
- Denac, M.; Musil, V.; Šmit, I. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1282–1290. [Google Scholar] [CrossRef]
- de Oliveira, C.I.R.; Rocha, M.C.G.; de Assis, J.T.; da Silva, A.L.N. Morphological, mechanical, and thermal properties of PP/SEBS/talc composites. J. Thermoplast. Compos. Mater. 2019, 35, 281–299. [Google Scholar] [CrossRef]
- Luo, X.; Chu, H.; Liu, M. Synthesis of Bio-Plasticizer from Soybean Oil and Its Application in Poly (Vinyl Chloride) Films. J. Renew. Mater. 2020, 8, 1295–1304. [Google Scholar] [CrossRef]
- Kormin, S.; Kormin, F.; Beg, M.D.H. Effect of plasticizer on physical and mechanical properties of ldpe / sago starch blend Effect of plasticizer on physical and mechanical properties of ldpe / sago starch blend. J. Phys. Conf. Ser. 2019, 1150, 012032. [Google Scholar] [CrossRef]
- Carmen, R. The Selection of Plastic Materials for Blood Bags. Transfus. Med. Rev. 1993, 7, 1–10. [Google Scholar] [CrossRef]
- Zahra, N.M.; Siswanto; Widiyanti, P. The role of chitosan on polyvinyl chloride (PVC)-glycerol biocomposites for blood bag application. J. Biomim. Biomater. Biomed. Eng. 2018, 37, 94–106. [Google Scholar] [CrossRef]
- Pötschke, P.; Pionteck, J.; Stutz, H. Surface tension, interfacial tension, and morphology in blends of thermoplastic polyurethanes and polyolefins. Part I. Surface tension of melts of TPU model substances and polyolefins. Polymer 2002, 43, 6965–6972. [Google Scholar] [CrossRef]
- Balkan, O.; Demirer, H.; Kayali, E.S. Effects of deformation rates on mechanical properties of PP/SEBS blends. J. Acheivement Mater. Manuf. Eng. 2011, 47, 26–33. [Google Scholar]
- Luna, C.B.B.; Siqueira, D.D.; Araújo, E.M.; do Nascimento, E.P.; da Costa Agra de Melo, J.B. Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology. Polym. Adv. Technol. 2022, 33, 111–124. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Ferreira, E.D.S.B.; Siqueira, D.D.; da Silva, W.A.; Araújo, E.M.; Wellen, R.M.R. Tailoring performance of PP/HIPS/SEBS through blending design. Mater. Res. Express 2019, 6, 115321. [Google Scholar] [CrossRef]
- Chungprempree, J.; Charoenpongpool, S.; Preechawong, J.; Atthi, N.; Nithitanakul, M. Simple preparation of polydimethylsiloxane and polyurethane blend film for marine antibiofouling application. Polymers 2021, 13, 2242. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, S.; Zhang, S.; Xi, T.; Sun, Q.; Xiong, L. Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch-Stärke 2016, 68, 239–248. [Google Scholar] [CrossRef]
- Kordjazi, Z.; Ajji, A. Partially miscible polymer blends of ethyl cellulose and hydroxyl terminated polybutadiene. Polymer 2020, 211, 123067. [Google Scholar] [CrossRef]
- Bourara, H.; Hadjout, S.; Benabdelghani, Z.; Etxeberria, A. Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/Poly(vinyl methyl ketone). Polymers 2014, 6, 2752–2763. [Google Scholar] [CrossRef] [Green Version]
- Casadellà, A.; Schaetzle, O.; Loos, K. Ammonium across a Selective Polymer Inclusion Membrane: Characterization, Transport, and Selectivity. Macromol. Rapid Commun. 2016, 37, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Chiu, F.-C.; Chu, P.-H. Characterization of Solution-Mixed Polypropylene/Clay Nanocomposites without Compatibilizers. J. Polym. Res. 2006, 13, 73–78. [Google Scholar] [CrossRef]
- Bao, S.; Tjong, S.C. Impact essential work of fracture of polypropylene / montmorillonite nanocomposites toughened with SEBS-g-MA elastomer. Compos. Part A Appl. Sci. Manuf. 2007, 38, 378–387. [Google Scholar] [CrossRef]
- Niu, P.; Liu, B.; Wei, X.; Wang, X.; Yang, J. Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. J. Reinf. Plast. Compos. 2011, 30, 36–44. [Google Scholar] [CrossRef]
- Taha, T.A.; Saleh, A. Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl. Phys. A 2018, 124, 600. [Google Scholar] [CrossRef]
- Bhavsar, V.; Tripathi, D. Low and high frequency shielding effectiveness of PVC-PPy films. Polym. Bull. 2018, 75, 2085–2104. [Google Scholar] [CrossRef]
- Abdelghany, A.; Meikhail, M.; Asker, N. Synthesis and structural-biological correlation of PVC\PVAc polymer blends. J. Mater. Res. Technol. 2019, 8, 3908–3916. [Google Scholar] [CrossRef]
- Matos, M.; Cordeiro, R.A.; Faneca, H.; Coelho, J.F.J.; Silvestre, A.J.D.; Sousa, A.F. Replacing Di(2-ethylhexyl) terephthalate by Di(2-ethylhexyl) 2,5-furandicarboxylate for PVC plasticization: Synthesis, materials preparation and characterization. Materials 2019, 12, 2336. [Google Scholar] [CrossRef] [Green Version]
- Gohatre, O.K.; Biswal, M.; Mohanty, S.; Nayak, S.K. Study on thermal, mechanical and morphological properties of recycled poly(vinyl chloride)/fly ash composites. Polym. Int. 2020, 69, 552–563. [Google Scholar] [CrossRef]
- Miyamoto, M.; Sasakawa, S. Effects of Autoclave Sterilization on the Physical Properties of Storage Bags and Granulocyte Function. Vox Sang. 1988, 54, 74–77. [Google Scholar] [CrossRef]
- Eades, B. Freezing and recovering rare red blood cells using glycerol. Immunohematology 2020, 36, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-H. Recovery of the mechanical properties of recycled styrene-ethylene-butylene-styrene/polypropylene (SEBS/PP) composites. Toxicol. Environ. Health Sci. 2015, 7, 277–281. [Google Scholar] [CrossRef]
- Corona-Galván, S.; Henche, A.G.; Alvarez, L.O.; Dynasol, G. Developments in SEBS for Medical and Other Valuable Applications. Rubber World Tech. Mag. 2020, 262, 30–41. [Google Scholar]
- Kim, J.K.; Kim, C.H.; Park, M.H. Effects of multiple recycling on the structure and morphology of SEBS/PP composites. Bull. Korean Chem. Soc. 2016, 37, 820–825. [Google Scholar] [CrossRef]
- Sampson, J.; De Korte, D. DEHP-plasticised PVC: Relevance to blood services. Transfus. Med. 2011, 21, 73–83. [Google Scholar] [CrossRef]
- Mazitova, A.K.; Vikhareva, I.N.; Aminova, G.K.; Savicheva, J.N. Application of Zinc Oxide to Obtain and Modify Properties of Adipate Plasticizer of Polyvinyl Chloride. Polymers 2020, 12, 1728. [Google Scholar] [CrossRef]
- Bhunia, K.; Sablani, S.S.; Tang, J.; Rasco, B. Migration of Chemical Compounds from Packaging Polymers during Microwave, Conventional Heat Treatment, and Storage. Compr. Rev. Food Sci. Food Saf. 2013, 12, 523–545. [Google Scholar] [CrossRef]
- European Commission. “Commission Regulation (EU) No. 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food (14 January 2011)”, Official Journal of the European Union. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:012:0001:0089:en:PD (accessed on 10 May 2022).
- Bodecchi, L.M.; Durante, C.; Malagoli, M.; Manfredini, M.; Marchetti, A.; Sighinolfi, S. Distribution of Heat Stabilizers in Plasticized PVC-Based Biomedical Devices: Temperature and Time Effects. Int. J. Spectrosc. 2011, 2011, 641257. [Google Scholar] [CrossRef]
Polymer Material | Polymer Composition (wt%) | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation-at-Break (%) |
---|---|---|---|---|
SEBS (one specimen only) | 100 | 7.06 | 0.43 | 2382.49 |
SEBS/PP | 70/30 | 15.52 ± 1 | 0.97 ± 0.1 | 637.9 ± 5.3 |
SEBS/PP | 50/50 | 23.28 ± 1.1 | 14.42 9 ± 0.9 | 121.2 ± 6.6 |
SEBS/PP | 40/60 | 24.93 ± 1.2 | 32.64 ± 1.8 | 88.91 ± 7.3 |
PP | 100 | 32.55 ± 6.2 | 321.56 ± 4.6 | 1886.7 ± 8.9 |
PVC-DEHP | N/A | 21.08 ± 0.8 | 5.59 ± 0.5 | 874.48 ± 9.7 |
Polymer Material | Polymer Composition (wt%) | Transparency (%) |
---|---|---|
SEBS/PP | 40/60 | 46.6 |
SEBS/PP | 50/50 | 56 |
SEBS/PP | 70/30 | 56.5 |
PVC-DEHP | N/A | 9.7 |
Polymer Material | Polymer Composition (wt%) | Tc (°C) | Tm (°C) | Tg (°C) |
---|---|---|---|---|
SEBS/PP | 40/60 | 94.50 | 142.15 | −43.76 |
SEBS/PP | 50/50 | 87.09 | 144.70 | −40.72 |
SEBS/PP | 70/30 | 80.21 | 142.84 | −43.04 |
Polymer Material | Polymer Composition (wt%) | Hardness (Shore A) |
---|---|---|
SEBS/PP | 40/60 | 91.9 |
SEBS/PP | 50/50 | 88.9 |
SEBS/PP | 70/30 | 76.5 |
PVC-DEHP | N/A | 82.9 |
Specific Metal Migration | Polymer Composition | |
---|---|---|
SEBS/PP 50/50 (mg/kg) | PVC-DEHP (mg/kg) | |
zinc | 1.6 | 6.0 |
aluminium | 2.1 | 2.8 |
barium | ND < 0.3 | ND < 0.3 |
cobalt | ND < 0.05 | ND < 0.05 |
copper | ND < 0.3 | ND < 0.3 |
iron | ND < 0.2 | ND < 0.2 |
lithium | ND < 0.5 | ND < 0.5 |
manganese | ND < 0.3 | ND < 0.3 |
nickel | ND < 0.03 | ND < 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murthe, S.S.; Sreekantan, S.; Mydin, R.B.S.M.N. Study on the Physical, Thermal and Mechanical Properties of SEBS/PP (Styrene-Ethylene-Butylene-Styrene/Polypropylene) Blend as a Medical Fluid Bag. Polymers 2022, 14, 3267. https://doi.org/10.3390/polym14163267
Murthe SS, Sreekantan S, Mydin RBSMN. Study on the Physical, Thermal and Mechanical Properties of SEBS/PP (Styrene-Ethylene-Butylene-Styrene/Polypropylene) Blend as a Medical Fluid Bag. Polymers. 2022; 14(16):3267. https://doi.org/10.3390/polym14163267
Chicago/Turabian StyleMurthe, Satisvar Sundera, Srimala Sreekantan, and Rabiatul Basria S. M. N. Mydin. 2022. "Study on the Physical, Thermal and Mechanical Properties of SEBS/PP (Styrene-Ethylene-Butylene-Styrene/Polypropylene) Blend as a Medical Fluid Bag" Polymers 14, no. 16: 3267. https://doi.org/10.3390/polym14163267
APA StyleMurthe, S. S., Sreekantan, S., & Mydin, R. B. S. M. N. (2022). Study on the Physical, Thermal and Mechanical Properties of SEBS/PP (Styrene-Ethylene-Butylene-Styrene/Polypropylene) Blend as a Medical Fluid Bag. Polymers, 14(16), 3267. https://doi.org/10.3390/polym14163267