Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrolysis of TEOS and TMSPM
2.3. Pre-Polymerization of R-UPR from PET Waste
2.4. Synthesis of Hybrid Solution by Sol-Gel
2.5. Fabrication of Hybrid Coatings by Dip Coating
2.6. Characterization
2.6.1. FT-IR
2.6.2. TGA
2.6.3. Thickness (SEM)
2.6.4. Mechanical Properties (Nanoindentation)
2.6.5. Adhesion Test
2.6.6. Roughness (AFM)
2.6.7. Wetting Capacity (Contact Angle)
3. Results and Discussion
3.1. Proposed Reaction Mechanism of the SiO2–R-UPR Hybrid Solution
3.2. FT-IR
3.2.1. FT-IR of R-UPR Solution
3.2.2. FT-IR of R-UPR:TEOS:TMSPM Hybrid Solution
3.3. Thermogravimetric Analysis (TGA)
3.4. Thickness (SEM)
3.5. Mechanical Properties (Nanoindentation)
3.6. Adhesion (ASTM D3359-17)
3.7. Roughness (AFM)
3.8. Wettability Capacity (Contact Angle)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheel, A.; Pant, D. 4-Chemical Depolymerization of PET Bottles via Glycolysis. In Plastics Design Library, Recycling of Polyethylene Terephthalate Bottles, 1st ed.; Thomas, S., Rane, A., Kanny, K., Abithia, V.K., Thomas, M.G., Eds.; William Andrew Publishing: Oxford, UK, 2019; pp. 61–84. [Google Scholar] [CrossRef]
- Wang, L.; Nelson, A.; Toland, J.; Holbrey, J.D. Glycolysis of PET Using 1,3-Dimethylimidazolium-2-Carboxylate as an Organocatalyst. ACS Sustain. Chem. Eng. 2020, 8, 13362–13368. [Google Scholar] [CrossRef]
- Lalhmangaihzuala, S.; Laldinpuii, Z.; Lalmuanpuia, C.; Vanlaldinpuia, K. Glycolysis of Poly(Ethylene Terephthalate) Using Biomass-Waste Derived Recyclable Heterogeneous Catalyst. Polymers 2021, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Kárpáti, L.; Fogarassy, F.; Kovácsik, D.; Vargha, V. One-Pot Depolymerization and Polycondensation of PET Based Random Oligo- and Polyesters. J. Polym. Environ. 2019, 27, 2167–2181. [Google Scholar] [CrossRef]
- Öztürk, Y.; Güçlü, G. Unsaturated Polyester Resins Obtained from Glycolysis Products of Waste PET. Polym. Plast. Technol. Eng. 2005, 43, 1539–1552. [Google Scholar] [CrossRef]
- Fink, J.K. (Ed.) 1-Unsaturated Polyester Resins. In Plastics Design Library, Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers, 3rd ed.; William Andrew Publishing: Chadds Ford, PA, USA, 2018; pp. 1–69. [Google Scholar] [CrossRef]
- Vaidya, U.R.; Nadkarni, V.M. Unsaturated polyester resins from poly(ethylene terephthalate) waste. 1. Synthesis and characterization. Ind. Eng. Chem. Res. 1987, 26, 194–198. [Google Scholar] [CrossRef]
- Lozano-Escárcega, R.J.; Sánchez-Anguiano, M.G.; Serrano, T.; Chen, J.Y.; Gómez, I. Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull. 2019, 76, 4157–4188. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.J.; Orozco-Carmona, V.M.; Alvarado-Beltrán, C.G.; Almaral-Sánchez, J.L.; Sepulveda-Guzman, S.; Jasso-Ramos, L.E.; Castro-Beltrán, A. Synthesis of Recycled Poly(ethylene terephthalate)/Polyacrylonitrile/Styrene Composite Nanofibers by Electrospinning and Their Mechanical Properties Evaluation. J. Polym. Environ. 2019, 27, 659–669. [Google Scholar] [CrossRef]
- Wilson-García, N.A.; Almaral-Sánchez, J.L.; Álvaro-Ortiz, R.A.; Hurtado-Macías, A.; Flores-Ramírez, N.; Aguilar-Palazuelos, E.; Flores-Valenzuela, J.; Castro-Beltrán, A.; Alvarado-Beltrán, C.G. Physical and mechanical properties of unsaturated polyester resin matrix from recycled PET (based PG) with corn straw fiber. J. Appl. Polym. Sci. 2021, 9, 51305. [Google Scholar] [CrossRef]
- Kickelbick, G. (Ed.) 1-Introduction to Hybrid Materials. In Hybrid Materials: Synthesis, Characterization, and Applications, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 1–48. [Google Scholar]
- Hernández-Barrios, C.A.; Cuao, C.A.; Jaimes, J.A.; Coy, A.E.; Viejo, F. Effect of the catalyst concentration, the immersion time and the aging time on the morphology, composition and corrosion performance of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy. Surf. Coat. Technol. 2017, 325, 257–269. [Google Scholar] [CrossRef]
- Yan, H.; Yuanhao, W.; Hongxing, Y. TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value. Appl. Energy 2017, 185, 2209–2216. [Google Scholar] [CrossRef]
- Tiringer, U.; Milošev, I.; Durán, A.; Castro, Y. Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6. J. Sol.-Gel. Sci. Technol. 2018, 85, 546–557. [Google Scholar] [CrossRef]
- Costenaro, H.; Lanzutti, A.; Paint, Y.; Fedrizzi, L.; Terada, M.; de Melo, H.G.; Olivier, M.G. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating. Surf. Coat. Technol. 2017, 324, 438–450. [Google Scholar] [CrossRef]
- Hamidon, T.S.; Hussin, M.H. Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog. Org. Coat. 2020, 140, 105478. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J. Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures. Appl. Phys. A Mater. Sci. Process. 2016, 122, 743. [Google Scholar] [CrossRef]
- Almaral-Sánchez, J.L.; Rubio, E.; Mendoza-Galván, A.; Ramírez-Bon, R. Red colored transparent PMMA-SiO2 hybrid films. J. Phys. Chem. Solids 2005, 66, 1660–1667. [Google Scholar] [CrossRef]
- Dao, P.H.; Nguyen, T.C.; Phung, T.L.; Nguyen, T.D.; Nguyen, A.H.; Vu, T.L.; Vu, Q.T.; Vu, D.T.; Tran, T.K.; Thai, H. Assessment of Some Characteristics and Properties of Zirconium Dioxide Nanoparticles Modified with 3-(Trimethoxysilyl) Propyl Methacrylate Silane Coupling Agent. J. Chem. 2021, 2021, 9925355. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Nguyen, T.D.; Vu, D.T.; Dinh, D.P.; Nguyen, A.H.; Ly, T.N.L.; Dao, P.H.; Nguyen, T.L.; Bach, L.G.; Hoang, T. Modification of Titanium Dioxide Nanoparticles with 3-(Trimethoxysilyl)propyl Methacrylate Silane Coupling Agent. J. Chem. 2020, 2020, 1381407. [Google Scholar] [CrossRef]
- ASTM D3359-17; Standard Test Methods for Rating Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Pang, B.; Ji, Y.; Zhang, Y.; Ni, H.; Liu, G.; She, W.; Yang, L.; Qian, R. Effect of the combined treatment with inorganic and organic agents on the surface hardening and adhesion properties of cement-based materials. Mater. Des. 2019, 169, 107673. [Google Scholar] [CrossRef]
- Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V. Organic-inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica). Opt. Mater. 2005, 27, 1266–1269. [Google Scholar] [CrossRef]
- Li, M.; Zhao, R.; Ma, S.; Yang, T. Scale Deposition Inhibiting Composites by HDPE/Silicified Acrylate Polymer/Nano-Silica for Landfill Leachate Piping. Materials 2020, 13, 3497. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Trifković, K.T.; Bugarski, B.; Pavlović, V.B.; Dzunuzović, J.; Tomić, M.; Marinković, A.D. High performance unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties. Express Polym. Lett. 2016, 10, 139–159. [Google Scholar] [CrossRef]
- Bautista, Y.; Gozalbo, A.; Mestre, S.; Sanz, V. Thermal degradation mechanism of a thermostable polyester stabilized with an open-cage oligomeric silsesquioxane. Materials 2017, 11, 22. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, M.; Zhang, X.; Leng, Y.; He, Y.; Li, B. Preparation of highly efficient flame retardant unsaturated polyester resin by exerting the fire resistant effect in gaseous and condensed phase simultaneously. Polym. Adv. Technol. 2019, 30, 1684–1695. [Google Scholar] [CrossRef]
- Cheng, Y.; Khlyustova, A.; Chen, P.; Yang, R. Kinetics of All-Dry Free Radical Polymerization under Nanoconfinement. Macromolecules 2020, 53, 10699–10710. [Google Scholar] [CrossRef]
- Halim, Z.A.A.; Yajid, M.A.M.; Idris, M.H.; Hamdan, H. Effects of Rice Husk Derived Amorphous Silica on the Thermal-Mechanical Properties of Unsaturated Polyester Composites. J. Macromol. Sci. Part B Phys. 2018, 57, 479–496. [Google Scholar] [CrossRef]
- Morote-Martínez, V.; Torregrosa-Coque, R.; Martín-Martínez, J.M. Addition of unmodified nanoclay to improve the performance of unsaturated polyester resin coating on natural stone. Int. J. Adhes. Adhes. 2011, 31, 154–163. [Google Scholar] [CrossRef]
- Morote-Martínez, V.; Pascual-Sánchez, V.; Martín-Martínez, J.M. Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. Eur. Polym. J. 2008, 44, 3146–3155. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Shu, Z.; Wang, Y.; Yakubu, Y.; Zhao, Y.; Li, X. Enhancing waterproof performance of phosphogypsum non-fired ceramics by coating silane-coupled unsaturated polyester resin. Mater. Lett. 2019, 252, 52–55. [Google Scholar] [CrossRef]
- Chen, S.H.; Liu, L.; Wang, T.C. Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems. Int. J. Solids Struct. 2007, 44, 4492–4504. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Ahmad, M.B.; Ibrahim, N.A.; Zainuddin, N. Effect of crosslinking concentration on properties of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone gels. Chem. Cent. J. 2018, 12, 15. [Google Scholar] [CrossRef]
- Fan, X.; Gu, S.; Wu, L.; Yang, L. Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide) copolymers with enhanced hydrophilicity. E-Polymers 2020, 20, 561–570. [Google Scholar] [CrossRef]
- Chabros, A.; Gawdzik, B.; Podkościelna, B.; Goliszek, M.; Paczkowski, P. Composites of unsaturated polyester resins with microcrystalline cellulose and its derivatives. Materials 2020, 13, 62. [Google Scholar] [CrossRef]
- Tawfik, M.E. Preparation and characterization of water-extended polyester based on recycled poly(ethylene terephthalate). J. Appl. Polym. Sci. 2003, 89, 3693–3699. [Google Scholar] [CrossRef]
- Rodriguez, E.L. The effect of free radical initiators and fillers on the cure of unsaturated polyester resins. Polym. Eng. Sci. 1991, 31, 1022–1028. [Google Scholar] [CrossRef]
- Kirshanov, K.; Toms, R.; Melnikov, P.; Gervald, A. Unsaturated Polyester Resin Nanocomposites Based on Post-Consumer Polyethylene Terephthalate. Polymers 2022, 14, 1602. [Google Scholar] [CrossRef] [PubMed]
- Bertoluzza, A.; Fagnano, C.; Morelli, M.A.; Gottardi, V.; Guglielmi, M. Raman and infrared spectra on silica gel evolving toward glass. J. Non. Cryst. Solids 1982, 48, 117–128. [Google Scholar] [CrossRef]
- Matos, M.C.; Ilharco, L.M.; Almeida, R.M. The evolution of TEOS to silica gel and glass by vibrational spectroscopy. J. Non. Cryst. Solids 1992, 147–148, 232–237. [Google Scholar] [CrossRef]
- Cruz-Quesada, G.; Espinal-Viguri, M.; López-Ramón, M.V.; Garrido, J.J. Hybrid xerogels: Study of the sol-gel process and local structure by vibrational spectroscopy. Polymers 2021, 13, 2082. [Google Scholar] [CrossRef] [PubMed]
- Niznansky, D.; Rehspringer, J.L. Infrared study of SiO2 sol to gel evolution and gel aging. J. Non. Cryst. Solids 1995, 180, 191–196. [Google Scholar] [CrossRef]
- Viart, N.; Rehspringer, J.L. Study of the action of formamide on the evolution of a sol by pH measurements and Fourier transformed infra-red spectroscopy. J. Non. Cryst. Solids 1996, 195, 223–231. [Google Scholar] [CrossRef]
- Tellez, L.; Rubio, J.; Rubio, F.; Morales, E.; Oteo, J.L. Synthesis of inorganic-organic hybrid materials from TEOS, TBT and PDMS. J. Mater. Sci. 2003, 38, 1773–1780. [Google Scholar] [CrossRef]
- Clark, D.E. Infrared spectroscopy of silica sols-effects of water concentration, catalyst, and aging. Spectrosc. Lett. 1992, 25, 201–220. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Ahmad, M.B.; Ibrahim, N.A.; Zainuddin, N. Synthesis and monomer reactivity ratios of [3(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone] copolymer. Int. J. Chem. Sci. 2016, 14, 2279–2291. [Google Scholar]
- Salgado-Delgado, R.; Salgado-Delgado, A.M. Theoretical and experimental spectroscopic analysis by FTIR in the effect of the silanes on the chemical modification of the surface of rice husk. Int. J. Eng. Res. Appl. 2016, 6, 4–7. [Google Scholar]
- Saputra, R.E.; Astuti, Y.; Darmawan, A. Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Suyama, K.; Kubota, M.; Shirai, M.; Yoshida, H. Chemical recycling of networked polystyrene derivatives using subcritical water in the presence of an aminoalcohol. Polym. Degrad. Stab. 2010, 95, 1588–1592. [Google Scholar] [CrossRef]
- Duque-Ingunza, I.; López-Fonseca, R.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Synthesis of unsaturated polyester resin from glycolysed postconsumer PET wastes. J. Mater. Cycles Waste Manag. 2013, 15, 256–263. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2004; pp. 71–93. [Google Scholar]
- De Oliveira Nassor, E.C.; Ávila, L.R.; Dos Santos Pereira, P.F.; Ciuffi, K.J.; Calefi, P.S.; Nassar, E.J. Influence of the hydrolysis and condensation time on the preparation of hybrid materials. Mater. Res. 2011, 14, 1. [Google Scholar] [CrossRef]
- Mat Rozi, N.; Hamid, H.A.; Hossain, M.S.; Khalil, N.A.; Ahmad Yahaya, A.N.; Syimir Fizal, A.N.; Haris, M.Y.; Ahmad, N.; Zulkifli, M. Enhanced Mechanical and Thermal Properties of Modified Oil Palm Fiber-Reinforced Polypropylene Composite via Multi-Objective Optimization of In Situ Silica Sol-Gel Synthesis. Polymers 2021, 13, 3338. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J. Polymerization of hybrid organic-inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Prog. Org. Coat. 2014, 77, 880–891. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, B.; Jin, X.; Song, L.; Hu, Y. Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Adv. 2016, 6, 49633–49642. [Google Scholar] [CrossRef]
- Kandare, E.; Kandola, B.K.; Price, D.; Nazaré, S.; Horrocks, R.A. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym. Degrad. Stab. 2008, 93, 1996–2006. [Google Scholar] [CrossRef]
- Ren, K.; Tsai, Y. Thermal hazard characteristics of unsaturated polyester resin mixed with hardeners. Polymers 2021, 13, 522. [Google Scholar] [CrossRef] [PubMed]
- Yahyaei, H.; Mohseni, M. Use of nanoindentation and nanoscratch experiments to reveal the mechanical behavior of sol-gel prepared nanocomposite films on polycarbonate. Tribol. Int. 2013, 57, 147–155. [Google Scholar] [CrossRef]
Sample | Ra (nm) | Rms (nm) | Rpv (nm) |
---|---|---|---|
TC | 0.592 | 0.778 | 8.934 |
HC1 | 0.480 | 0.656 | 10.670 |
HC2 | 0.818 | 1.040 | 12.657 |
HC3 | 0.808 | 1.122 | 24.636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bórquez-Mendivil, A.; Hurtado-Macías, A.; Leal-Pérez, J.E.; Flores-Valenzuela, J.; Vargas-Ortíz, R.Á.; Cabrera-Covarrubias, F.G.; Almaral-Sánchez, J.L. Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process. Polymers 2022, 14, 3280. https://doi.org/10.3390/polym14163280
Bórquez-Mendivil A, Hurtado-Macías A, Leal-Pérez JE, Flores-Valenzuela J, Vargas-Ortíz RÁ, Cabrera-Covarrubias FG, Almaral-Sánchez JL. Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process. Polymers. 2022; 14(16):3280. https://doi.org/10.3390/polym14163280
Chicago/Turabian StyleBórquez-Mendivil, Adrián, Abel Hurtado-Macías, Jesús Eduardo Leal-Pérez, Joaquín Flores-Valenzuela, Ramón Álvaro Vargas-Ortíz, Francisca Guadalupe Cabrera-Covarrubias, and Jorge Luis Almaral-Sánchez. 2022. "Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process" Polymers 14, no. 16: 3280. https://doi.org/10.3390/polym14163280
APA StyleBórquez-Mendivil, A., Hurtado-Macías, A., Leal-Pérez, J. E., Flores-Valenzuela, J., Vargas-Ortíz, R. Á., Cabrera-Covarrubias, F. G., & Almaral-Sánchez, J. L. (2022). Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process. Polymers, 14(16), 3280. https://doi.org/10.3390/polym14163280