Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites
Abstract
:1. Introduction
2. Materials and Methods
Bound Rubber Analysis
3. Results and Discussion
3.1. Rheology Properties of EPDM/CaCO3 Compounds
3.2. Effect of Silane on CaCO3 Dispersion in EPDM/CaCO3 Compounds
3.3. Bound Rubber Analysis of EPDM/CaCO3 Compounds
3.4. Mechanical Properties of Vulcanized Rubber
3.5. Dynamic Mechanical Properties of EPDM/CaCO3 Vulcanizates
4. Conclusions
- (1)
- The MH and MH–ML values increased with the addition of silane. When the vulcanization level is close to 50%, more cross-linkage appears in the rubber added with the VTMS and Geniosil XL 33 silane.
- (2)
- Geniosil XL 33 improved the dispersibility of CaCO3 in the EPDM matrix.
- (3)
- The addition of the VTMS and Geniosil XL 33 silane improved the interaction between the filler and the rubber matrix. The cross-links between the VTMS or Geniosil XL 33 silane and macromolecules in the rubber matrix contributed to the increase in the tensile and abrasion properties of the vulcanizates, which have a good agreement with the MH and MH–ML values in respect of rheology properties. When using the ETMS silane, although EPDM is non-polar, the filler–rubber interaction becomes minimal. In addition, the mechanical properties of the composites were obviously decreased compared to no silane.
- (4)
- The storage modulus of the EPDM/CaCO3 vulcanizates gradually decreased with the increase of dynamic strain. At low strain, a high storage modulus of the vulcanizates was obtained with silane addition. When the strain exceeded 10%, the storage modulus of the vulcanizates with the Geniosil XL 33 and VTMS silanes was higher; this resulted from the greater cross-linkage that occurred between the silane and rubber macromolecule chains. Compared to the ETMS and 0 silane, a lower loss modulus of the vulcanized rubber with the Geniosil XL 33 and VTMS silanes was obtained due to the weakening of the filler network; while tan δ of the vulcanizates with the VTMS and Geniosil XL 33 silanes also decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, N.Q.; Marossy, K.; Baumli, P. Effects of nanocrystalline calcium oxide particles on mechanical, thermal, and electrical properties of EPDM rubber. Colloid Polym. Sci. 2021, 299, 1669–1682. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Zhang, Y.; Zhang, Y. Reinforcement effect of MAA on nano-CaCO3-filled EPDM vulcanizates and possible mechanism. J. Polym. Sci. B Polym. Phys. 2006, 44, 1226–1236. [Google Scholar] [CrossRef]
- Rybiński, P.; Syrek, B.; Marzec, A.; Szadkowski, B.; Kuśmierek, M.; Śliwka-Kaszyńska, M.; Mirkhodjaev, U.Z. Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites. Materials 2021, 14, 5245. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.; Ishak, S.; Hamid, Z.A. Comparison Effect of Mica and Talc as Filler in EPDM Composites on Curing, Tensile and Thermal Properties. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 109–122. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.Y.; Chung, K.H.; Jang, K.S. Phlogopite-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) Composites with Aminosilane Compatibilizer. Polymers 2021, 13, 2318. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.; Ishak, S.; Hamid, Z. Effect of silane coupling agent on the curing, tensile, thermal, and swelling properties of ethylene-propylene-diene monomer rubber (EPDM)/mica composites. J. Vinyl Addit. Technol. 2014, 20, 116–121. [Google Scholar] [CrossRef]
- Rana, A.S.; Vamshi, M.K.; Naresh, K.; Velmurugan, R.; Sarathi, R. Mechanical, thermal, electrical and crystallographic behaviour of EPDM rubber/clay nanocomposites for out-door insulation applications. Adv. Mater. Process. Technol. 2019, 6, 54–74. [Google Scholar] [CrossRef]
- Roshanaei, H.; Khodkar, F.; Alimardani, M. Contribution of filler–filler interaction and filler aspect ratio in rubber reinforcement by silica and mica. Iran. Polym. J. 2020, 29, 901–909. [Google Scholar] [CrossRef]
- Duan, H. Surface Modification of Ultra-Fine Calcium Carbonate Powders. Master’s Thesis, South China University of Technology, Guangzhou, China, 2011. [Google Scholar]
- Yuan, S.; Li, Y.; Zhang, Q.; Wen, J.; Zhu, Z. The Tribological Properties of PP/EPDM/CaCO3 Composites Modified by HDPE. IOP Conf. Ser. Mater. Sci. Eng. 2018, 381, 012098. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, Y.; Guo, W.; Meng, Z.; Wei, W.; Hua, L.; Yang, Q. Effect of POE on mechanical properties and cellular structure of PP/Nano-CaCO3 composites in IMD/MIM process. Mater. Res. Express 2020, 7, 095308. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Shaltout, N.A.; El Miligy, A.A. The effect of gamma irradiation and particle size of CaCO3 on the properties of HDPE/EPDM blends. Arab. J. Chem. 2011, 4, 71–77. [Google Scholar] [CrossRef]
- Khongwong, W.; Keawprak, N.; Somwongsa, P.; Tattaporn, D.; Ngernchuklin, P. Effect of Alternative Fillers on the Properties of Rubber Compounds. Key Eng. Mater. 2019, 798, 316–321. [Google Scholar] [CrossRef]
- Anancharoenwong, E.; Marthosa, S.; Suklueng, M.; Niyomwas, S.; Chaiprapat, S. Effect of silicon carbide on the properties of natural rubber blends with EPDM rubber. Int. J. Integr. Eng. 2020, 12, 234–240. [Google Scholar]
- Song, J.; Li, Y.M.; Tang, Y.J. Surface modification of nano-CaCO3 via wet route in water phase. NCM 2006, 34, 43–46. [Google Scholar]
- Gao, X.L.; Huang, W.; Chen, X.J. Mechanical properties and dispersion morphology of radiation vulcanized EPDM filled with nanofiller. NCM 2006, 34, 57–60. [Google Scholar]
- Ersoy, O.; Köse, H. Comparison of the effect of reactive and nonreactive treatments on the dispersion characteristics of a calcium carbonate (calcite) filler in a polypropylene matrix composite. Polym. Compos. 2020, 41, 3483–3490. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Weng, Y. Effects of CaCO3 surface modification and water spraying on the weathering properties of PBAT/CaCO3 films. Polym. Test. 2021, 102, 107334. [Google Scholar] [CrossRef]
- Demjen, Z.; Pukánszky, B.; Földes, E.; Nagy, J. Interaction of silane coupling agents with CaCO3. J. Colloid Interface Sci. 1997, 190, 427–436. [Google Scholar] [CrossRef]
- Ishida, H.; Koenig, J.L. Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber. J. Colloid Interface Sci. 1978, 64, 565–576. [Google Scholar] [CrossRef]
- Ishida, H.; Miller, J.D. Substrate effects on the chemisorbed and physisorbed layers of methacryl silane-modified particulate minerals. Macromolecules 1984, 17, 1659–1666. [Google Scholar] [CrossRef]
- Nagata, K.; Takahashi, Y.; Shibusawa, S.; Nakamura, Y. Interfacial structure in vulcanized EPDM filled with mercaptosilane-treated Al(OH)3 and its influence on the mechanical properties. J. Adhes. Sci. Technol. 2002, 16, 1017–1026. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Zhang, Y.; Zhang, Y. Coated Nano-Sized CaCO3 Reinforced Semi-Crystalline EPDM. Polym. Polym. Compos. 2006, 14, 527–536. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Zhang, J. Surface modification of CaCO3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex. Chalcogenide Lett. 2013, 10, 131–141. [Google Scholar]
- Oh, J.; Yoo, Y.H.; Yoo, I.; Huh, Y.; Chaki, T.K.; Nah, C. Effect of plasticizer and curing system on freezing resistance of rubbers. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Ge, X.; Li, M.-C.; Li, X.X.; Cho, U.R. Effects of silane coupling agents on the properties of bentonite/nitrile butadiene rubber nanocomposites synthesized by a novel green method. Appl. Clay Sci. 2015, 118, 265–275. [Google Scholar] [CrossRef]
- Yang, C.Y. The Effect of Carbon Black Dispersion and NR Molecular Weight on Dynamic Properties of Carbon Black/NR Composites. Master’s Thesis, Qingdao University of Science & Technology, Qingdao, China, 2017. [Google Scholar]
- Song, C.Z.; Che, Y.X.; Zhang, Z.G. Effect of silane coupling agent on filler network structure and dynamic mechanical properties of carbon black/silica reinforecd nitrile rubber. China Synth. Rubber Ind. 2011, 34, 128–132. [Google Scholar]
- Kraus, G. Loss mechanism of carbon black filled rubber. J. Appl. Polym. Sci. 1984, 39, 75–84. [Google Scholar]
- Wang, M.-J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem. Technol. 1998, 71, 520–589. [Google Scholar] [CrossRef]
- Jia, Z.C. Thermal Viscoelastic Damping Properties of Modified EPDM Elastomer. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2020. [Google Scholar]
Ingredients | Dosage |
---|---|
EPDM | 100 |
CaCO3 | 100 |
BIPB | 7 |
ZMB2/C-5 | 1 |
TMQ | 0.75 |
PARALUX 6001R | 25 |
Silane | 0/0.5 |
Silane | 0 | VTMS | ETMS | Geniosil XL 33 |
---|---|---|---|---|
ML/Nm | 1.17 | 1.18 | 1.17 | 1.22 |
MH/Nm | 20.15 | 21.26 | 20.63 | 22.95 |
MH–ML/Nm | 18.98 | 20.08 | 19.46 | 21.73 |
Ts1/sec | 37.2 | 34.2 | 36 | 33 |
T90/sec | 619.92 | 608.52 | 610.62 | 590.82 |
Silane | 0 | VTMS | ETMS | Geniosil XL 33 |
---|---|---|---|---|
BdR, % | 3.12 | 3.46 | 3.16 | 3.36 |
Silane | 0 | VTMS | ETMS | Geniosil XL 33 |
---|---|---|---|---|
Tear resistance, N/mm | 1.4 | 1.5 | 1.2 | 1.5 |
Abrasion volume, mm3 | 593 | 508 | 745 | 377 |
Filler/ Trade Name | CaCO3 (Uncoated)/Omyacarb 1-AV | CaCO3 (Stearic Coated) Omyacarb 1T-AV |
---|---|---|
Tensile strength, MPa | 3.3 | 2.7 |
Elongation at break, % | 300 | 235 |
Tear resistance, N/mm | 1.4 | 1.2 |
Abrasion volume, mm3 | 593 | 775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, W.; Goegelein, C.; Hoch, M.; Kirchhoff, J.; Zhao, S. Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites. Polymers 2022, 14, 3393. https://doi.org/10.3390/polym14163393
Bi W, Goegelein C, Hoch M, Kirchhoff J, Zhao S. Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites. Polymers. 2022; 14(16):3393. https://doi.org/10.3390/polym14163393
Chicago/Turabian StyleBi, Weina, Christoph Goegelein, Martin Hoch, Joerg Kirchhoff, and Shugao Zhao. 2022. "Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites" Polymers 14, no. 16: 3393. https://doi.org/10.3390/polym14163393
APA StyleBi, W., Goegelein, C., Hoch, M., Kirchhoff, J., & Zhao, S. (2022). Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites. Polymers, 14(16), 3393. https://doi.org/10.3390/polym14163393