Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix
Abstract
:1. Introduction
2. Materials and Methods
Composite Machining Process
3. Test Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicodemo, L.; Nicolais, L. Mechanical properties of metal/polymer composites. J. Mater. Sci. Lett. 1983, 2, 201–203. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Dayana, D.A.Z.N.; Amelia, J.J.N.; Rani, M.S.A.; Norrrahim, M.N.F.; Nurazzi, N.M.; Aisyah, H.A.; Sharma, S.; et al. Polymer composites filled with metal derivatives: A review of flame retardants. Polymers 2021, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of polymers and polymer–metal hybrid structures. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Söderholm, P.; Ekvall, T. Metal markets and recycling policies: Impacts and challenges. Miner. Econ. 2020, 33, 257–272. [Google Scholar] [CrossRef]
- Delmonte, J. Metal/Polymer Composites; Springer: New York, NY, USA, 1990. [Google Scholar]
- Bhattacharya, S.K. Metal Filled Polymers; CRC Press: New York, NY, USA, 1986. [Google Scholar]
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef]
- Bishay, I.K.; Abd-El-Messieh, S.L.; Mansour, S.H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminium powder. Mater. Des. 2011, 32, 62–68. [Google Scholar] [CrossRef]
- Sehajpal, S.B.; Sood, V.K. Effect of metal fillers on some physical properties of acrylic resin. J. Prosthet. Dent. 1989, 61, 746–751. [Google Scholar] [CrossRef]
- Bhagyashekar, M.S.; Rao, K.; Rao, R.; Bhagyashekar, M.S.; Rao, K.; Rao, R. Studies on Rheological and Physical Properties of Metallic and Non-metallic Particulate Filled Epoxy Composites. J. Reinf. Plast. Compos. 2009, 28, 2869–2878. [Google Scholar] [CrossRef]
- Akhtar, M.W.; Lee, Y.S.; Yoo, D.J.; Kim, J.S. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Compos. Part B 2017, 131, 184–195. [Google Scholar] [CrossRef]
- Abdulkareem, S.A.; Amosa, M.K.; Adeniyi, A.G.; Magaji, M.M.; Ajibola, R.A. Effect of metallic fillers on the hardness of poly-styrene composites: An experimental investigation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012058. [Google Scholar] [CrossRef]
- Osman, A.F.; Mariatti, M. Properties of Aluminium filled Polypropylene Composites. Polym. Polym. Compos. 2006, 14, 623. [Google Scholar] [CrossRef]
- Nurazreena, H.; Ismail, L.B.; Mariatti, H. Metal filled high density polyethylene composites—Electrical and tensile properties. J. Thermoplast. Compos. Mater. 2006, 19, 413–425. [Google Scholar] [CrossRef]
- Lotfy, A.; Mohamed, E.; Handam, A.K.; Yu, B.R. Investigation of Polymer-70% Aluminum Powder Composite. Int. J. Metall Met. Phys. 2020, 5, 1–10. [Google Scholar]
- Tavman, I.H. Thermal and mechanical properties of aluminum powderfilled high-density polyethylene composites. J. Appl. Polym. Sci. 1996, 62, 2161–2167. [Google Scholar] [CrossRef]
- Pinto, G.; Jiménez-Martín, A. Conducting aluminium-filled nylon 6 composites. Polym. Compos. 2001, 22, 65–70. [Google Scholar] [CrossRef]
- Schricker, K.; Bergmann, J.P.; Hopfeld, M.; Spie, L. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. Weld. World 2021, 65, 699–711. [Google Scholar] [CrossRef]
- Kovtun, V.; Pasovets, V.; Pieczonka, T. Tribological properties and microstructure of the metal-polymer composite thin layer deposited on a copper plate by electrocontact sintering. Arch. Metall. Mater. 2017, 62, 51–58. [Google Scholar] [CrossRef]
- Bloor, D.; Donnelly, K.; Hands, P.J.; Laughlin, P.; Lussey, D. A metalpolymer composite with unusual properties. J. Phys. D Appl. Phys. 2005, 38, 2851–2860. [Google Scholar] [CrossRef]
- Dasture, M.D.; Kelkar, D.S. Aluminium-filled low-density polyethylene structural, morphological, and mechanical properties. J. Appl. Polym. Sci. 2007, 106, 2436–2441. [Google Scholar] [CrossRef]
- Eddoumy, F.; Kasem, H.; Dhieb, H.; Buijnsters, J.; Dufrenoy, P.; Celis, J.P.; Desplanques, Y. Impact of brass as filler on thermal, mechanical, friction and wear properties of brake pad composites. Mech. Ind. 2018, 19, 105. [Google Scholar] [CrossRef]
- Karadağ, H.B.; Aslan, İ. Recycling of waste brass and cast iron chips through metal matrix composite material production- investigation of mechanical properties. Am. J. Eng. Res. 2018, 7, 292–304. [Google Scholar]
- Gnatowski, A.; Gołębski, R.; Sikora, P. Analysis of the Impact of Changes in Thermomechanical Properties of Polymer Materials on the Machining Process of Gears. Polymers 2021, 13, 28. [Google Scholar] [CrossRef]
- Usca, Ü.A.; Uzun, M.; Şap, S.; Kuntoğlu, M.; Giasin, K.; Pimenov, D.Y.; Wojciechowski, S. Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. J. Mater. Res. Technol. 2022, 16, 1243–1259. [Google Scholar] [CrossRef]
- Usca, Ü.A.; Uzun, M.; Kuntoğlu, M.; Şap, S.; Giasin, K.; Pimenov, D.Y. Tribological Aspects, Optimization and Analysis of Cu-B-CrC Composites Fabricated by Powder Metallurgy. Materials 2021, 14, 4217. [Google Scholar] [CrossRef]
- Teti, R. Machining of Composite Materials. CIRP Ann. 2002, 51, 611–634. [Google Scholar] [CrossRef]
- Usca, Ü.A.; Şap, S.; Uzun, M.; Kuntoğlu, M.; Salur, E.; Karabiber, A.; Pimenov, D.Y.; Giasin, K.; Wojciechowski, S. Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramic-based metal matrix composite materials. J. Mater. Res. Technol. 2022, 17, 2987–2998. [Google Scholar] [CrossRef]
- Prakash Rao, C.R.; Bhagyashekar, M.S.; Narendraviswanath, N. Effect of machining parameters on the surface roughness while turning particulate composites. Procedia Eng. 2014, 97, 421–431. [Google Scholar] [CrossRef]
- ISO 6721-1:2019; Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland.
- Wetton, R.E.; Marsh, R.D.L.; Van-de-Velde, J.G. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta 1991, 175, 1–11. [Google Scholar] [CrossRef]
- Dynamic Mechanical Analysis, A Beginner’s Guide. Available online: https://www.perkinelmer.com/CMSResources/Images/44-74546GDE_IntroductionToDMA.pdf (accessed on 6 July 2022).
- Hoffmann Group. Available online: https://www.hoffmann-group.com/GB/en/houk/Mono-machining/Solid-carbide-milling-cutters/Diabolo-solid-carbide-milling-cutter-HPC-TiAlN/p/203211?comingFromCategory=20 (accessed on 8 April 2022).
- ISO 25178-73:2019; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 73: Terms and Definitions for Surface Defects on Material Measures. International Organization for Standardization: Geneva, Switzerland.
- Wieczorowski, M. Theoretical principles of spatial analysis of surface unevenness. Mach Eng. 2013, 18, 7–34. [Google Scholar]
- ISO 4287:1997; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland.
Surface Parameters | Sample (a) 100% Resin | Sample (b) 5% Resin 95% Brass | Sample (c) 5% Resin 95% Aluminum |
---|---|---|---|
Roughness profile amplitude parameters—ISO4287 | |||
Ra [µm] | 3.85 | 3.06 | 0.572 |
Rz [µm] | 20.9 | 21.8 | 4.31 |
Rp [µm] | 10.1 | 8.27 | 1.48 |
Rv [µm] | 10.8 | 13.6 | 2.83 |
Rsk | −0.373 | −2.56 | −31.4 |
Rku | 3.22 | 15.2 | 562 |
Roughness profile height parameters—ISO25178 | |||
Sq [µm] | 7.17 | 7.95 | 2.22 |
Sp [µm] | 25.6 | 32.9 | 19.5 |
Sv [µm] | 46.8 | 94.4 | 62.4 |
Sz [µm] | 72.4 | 127 | 81.9 |
Sa [µm] | 5.56 | 4.36 | 0.907 |
Ssk | −0.808 | −3.16 | −8.47 |
Sku | 4.16 | 18.2 | 150 |
Surface functional parameters—ISO25178 | |||
Rmr [%] | 0.14 | 0.307 | 0.958 |
Smq [%] | 83.5 | 92.3 | 98.3 |
Svq [µm] | 12.6 | 16.4 | 24.0 |
Spq [µm] | 5.25 | 2.25 | 0.977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnatowski, A.; Gołębski, R.; Petru, J.; Pagac, M. Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix. Polymers 2022, 14, 3501. https://doi.org/10.3390/polym14173501
Gnatowski A, Gołębski R, Petru J, Pagac M. Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix. Polymers. 2022; 14(17):3501. https://doi.org/10.3390/polym14173501
Chicago/Turabian StyleGnatowski, Adam, Rafał Gołębski, Jana Petru, and Marek Pagac. 2022. "Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix" Polymers 14, no. 17: 3501. https://doi.org/10.3390/polym14173501
APA StyleGnatowski, A., Gołębski, R., Petru, J., & Pagac, M. (2022). Analysis of Thermomechanical Properties and the Influence of Machining Process on the Surface Structure of Composites Manufactured from Metal Chips with a Polymer Matrix. Polymers, 14(17), 3501. https://doi.org/10.3390/polym14173501