Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Test Methods
3. Results
4. Conclusions
- When specimens using surface-treated inorganic particles were arranged in a good dispersion state and in the direction in which stress was applied after tensioning, no holes were formed, confirming the strong bond formation state with the resin.
- As a result of comparing tensile strength and hardness characteristics by the type and content of the flame retardant, in the case of MPP, the flame retardancy tended to increase as the amount of the flame retardant increased. However, tensile strength and flexural strength were lowered. Thus, additional research is needed for optimization and improvement.
- CBATS decreased linearly, and CBABS decreased exponentially as a function of the amount of the modified flame retardant added. It is considered that the increase in the amount of modified flame retardant has a greater effect on bending strength than on tensile strength.
- Through the investigation of the relationship between the modified flame retardant and the mechanical strength, it is thought that the utilization will be high as basic data for the compounding of the composite material that can satisfy the flame retardancy and mechanical strength required in the automobile industry. In particular, it is expected to expand to the application of backward injection materials for interior components such as door trims in the automobile industry, where the demands for eco-friendly production such as weight reduction and integration of production process are increasing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, E.-H.; Yoon, Y.-S.; Jeon, T.-W.; Lee, Y.-K.; Bae, J.-S. Study on Thermal Treatment of Chlorinated Flame Retardant in Waste Containing Halogen Flame Retardant. J. Korean Soc. Hazard Mitig. 2018, 18, 655–663. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, T.; Zou, B.; Hu, W.; Wang, B.; Zhan, J.; Ma, C.; Hu, Y. Synthesis of a Novel Liquid Phosphorus-Containing Flame Retardant for Flexible Polyurethane Foam: Combustion Behaviors and Thermal Properties. Polym. Degrad. Stab. 2020, 171, 109029. [Google Scholar] [CrossRef]
- Nelson, G.L. “Green Products,” A Challenge to Flame-Retardant Plastics. In Fire and Polymers II; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1995; Volume 599, pp. 35–579. ISBN 9780841232310. [Google Scholar]
- Turi, E. Thermal Characterization of Polymeric Materials; Academic Press: Cambridge, MA, USA, 1981; pp. xi–xiv. ISBN 978-0-12-703780-6. [Google Scholar]
- Sain, M.; Park, S.H.; Suhara, F.; Law, S. Flame Retardant and Mechanical Properties of Natural Fibre–PP Composites Containing Magnesium Hydroxide. Polym. Degrad. Stab. 2004, 83, 363–367. [Google Scholar] [CrossRef]
- Song, Y.-H.; Chung, K.-S. Assessment of Flame Retardancy for Acrylonitrile Butadiene Styrene Containing Metal Powder and Flame Retardant. Fire Sci. Eng. 2007, 21, 30–35. [Google Scholar]
- Song, Y.-H.; Chung, K.-S. Improvement the Flame Retardancy of Epoxy Resin by the Addition of Montmorillonite. Fire Sci. Eng. 2008, 22, 300–304. [Google Scholar]
- Bi, Q.; Yao, D.; Yin, G.-Z.; You, J.; Liu, X.-Q.; Wang, N.; Wang, D.-Y. Surface Engineering of Magnesium Hydroxide via Bioinspired Iron-Loaded Polydopamine as Green and Efficient Strategy to Epoxy Composites with Improved Flame Retardancy and Reduced Smoke Release. React. Funct. Polym. 2020, 155, 104690. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Influence of Flame Retardant Magnesium Hydroxide on the Mechanical Properties of High Density Polyethylene Composites. J. Reinf. Plast. Compos. 2017, 36, 1802–1816. [Google Scholar] [CrossRef]
- Ren, M.Y.; Yang, M.; Li, S.; Chen, G.; Yuan, Q. High Throughput Preparation of Magnesium Hydroxide Flame Retardant via Microreaction Technology. RSC Adv. 2016, 6, 92670–92681. [Google Scholar] [CrossRef]
- Yao, D.; Yin, G.; Bi, Q.; Yin, X.; Wang, N.; Wang, D.-Y. Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers 2020, 12, 2107. [Google Scholar] [CrossRef]
- Durin-France, A.; Ferry, L.; Lopez Cuesta, J.-M.; Crespy, A. Magnesium Hydroxide/Zinc Borate/Talc Compositions as Flame-Retardants in EVA Copolymer. Polym. Int. 2000, 49, 1101–1105. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Guo, S. Structure and Properties of Polypropylene Composites Filled with Magnesium Hydroxide. J. Appl. Polym. Sci. 2006, 102, 4943–4951. [Google Scholar] [CrossRef]
- Tai, C.M.; Li, R.K.Y. Mechanical Properties of Flame Retardant Filled Polypropylene Composites. J. Appl. Polym. Sci. 2001, 80, 2718–2728. [Google Scholar] [CrossRef]
- Zhang, S.; Horrocks, A.R. A Review of Flame Retardant Polypropylene Fibres. Prog. Polym. Sci. 2003, 28, 1517–1538. [Google Scholar] [CrossRef]
- Camino, G.; Maffezzoli, A.; Braglia, M.; De Lazzaro, M.; Zammarano, M. Effect of Hydroxides and Hydroxycarbonate Structure on Fire Retardant Effectiveness and Mechanical Properties in Ethylene-Vinyl Acetate Copolymer. Polym. Degrad. Stab. 2001, 74, 457–464. [Google Scholar] [CrossRef]
- Jiao, L.-L.; Zhao, P.-C.; Liu, Z.-Q.; Wu, Q.-S.; Yan, D.-Q.; Li, Y.-L.; Chen, Y.-N.; Li, J.-S. Preparation of Magnesium Hydroxide Flame Retardant from Hydromagnesite and Enhance the Flame Retardant Performance of EVA. Polymers 2022, 14, 1567. [Google Scholar] [CrossRef]
- Rincon, L.; Fayolle, B.; Audouin, L.; Verdu, J. A General Solution of the Closed-Loop Kinetic Scheme for the Thermal Oxidation of Polypropylene. Polym. Degrad. Stab. 2001, 74, 177–188. [Google Scholar] [CrossRef]
- Kahraman, M.; Klzllcan, N.; Oral, M.A. Influence of Mica Mineral on Flame Retardancy and Mechanical Properties of Intumescent Flame Retardant Polypropylene Composites. Open Chem. 2021, 19, 904–915. [Google Scholar] [CrossRef]
- Pani, B.; Sirohi, S.; Singh, D. Studies on the Effects of Various Flame Retardants on Polypropylene. Am. J. Polym. Sci. 2013, 2013, 63–69. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, C.-L.; Zhao, J.; Wang, J.-S.; Chen, L.; Wang, Y.-Z. An Efficiently Halogen-Free Flame-Retardant Long-Glass-Fiber-Reinforced Polypropylene System. Polym. Degrad. Stab. 2011, 96, 363–370. [Google Scholar] [CrossRef]
- Isitman, N.A.; Gunduz, H.O.; Kaynak, C. Nanoclay Synergy in Flame Retarded/Glass Fibre Reinforced Polyamide 6. Polym. Degrad. Stab. 2009, 94, 2241–2250. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q. Preparation, Properties and Characterizations of Halogen-Free Nitrogen–Phosphorous Flame-Retarded Glass Fiber Reinforced Polyamide 6 Composite. Polym. Degrad. Stab. 2006, 91, 2003–2013. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Liu, Y.; Wang, Y.-Z.; Artiles, C.P.; Hull, T.R.; Price, D. Fire Retardancy of a Reactively Extruded Intumescent Flame Retardant Polyethylene System Enhanced by Metal Chelates. Polym. Degrad. Stab. 2007, 92, 1592–1598. [Google Scholar] [CrossRef]
- Ramírez-Vargas, E.; Sánchez-Valdes, S.; Parra-Tabla, O.; Castañeda-Gutiérrez, S.; Méndez-Nonell, J.; Francisco Ramos-deValle, L.; López-León, A.; Lujan-Acosta, R. Structural Characterization of LDPE/EVA Blends Containing Nanoclay-Flame Retardant Combinations. J. Appl. Polym. Sci. 2012, 123, 1125–1136. [Google Scholar] [CrossRef]
- Ramazani, S.A.A.; Rahimi, A.; Frounchi, M.; Radman, S. Short Communication. Mater. Des. 2008, 29, 1051–1056. [Google Scholar] [CrossRef]
- Zanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Cone Calorimeter Combustion and Gasification Studies of Polymer Layered Silicate Nanocomposites. Chem. Mater. 2002, 14, 881–887. [Google Scholar] [CrossRef]
- Huang, N.H.; Chen, Z.J.; Wang, J.Q.; Wei, P. Synergistic Effects of Sepiolite on Intumescent Flame Retardant Polypropylene. Express Polym. Lett. 2010, 4, 743–752. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.-Z. A Review on Flame Retardant Technology in China. Part I: Development of Flame Retardants. Polym. Adv. Technol. 2010, 21, 1–26. [Google Scholar] [CrossRef]
- Ma’ali, R. Effects of Flame Retardants Additives on the Properties of Low-Density Polyethylene. Int. J. Eng. Technol. Sci. 2018, 5, 57–65. [Google Scholar] [CrossRef]
- Weil, E.D.; Levchik, S.V. Flame Retardants for Plastics and Textiles: Practical Applications; Carl Hanser Verlag GmbH & Company KG: Munich, Germany, 2009. [Google Scholar]
- Schartel, B. Phosphorus-Based Flame Retardancy Mechanisms-Old Hat or a Starting Point for Future Development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Price, D. (Eds.) Advances in Fire Retardant Materials; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2008; ISBN 978-1-84569-262-9. [Google Scholar]
- Tang, Y.; Hu, Y.; Zhang, R.; Gui, Z.; Wang, Z.; Chen, Z.; Fan, W. Investigation on Polypropylene and Polyamide-6 Alloys/Montmorillonite Nanocomposites. Polymer 2004, 45, 5317–5326. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Song, L.; Zong, R.; Gui, Z.; Fan, W. Preparation and Combustion Properties of Flame Retarded Polypropylene–Polyamide-6 Alloys. Polym. Degrad. Stab. 2006, 91, 234–241. [Google Scholar] [CrossRef]
- Almeras, X.; Renaut, N.; Jama, C.; Le Bras, M.; Tóth, A.; Bourbigot, S.; Marosi, G.; Poutch, F. Structure and Morphology of an Intumescent Polypropylene Blend. J. Appl. Polym. Sci. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Ma, Z.-L.; Zhang, W.-Y.; Liu, X.-Y. Using PA6 as a Charring Agent in Intumescent Polypropylene Formulations Based on Carboxylated Polypropylene Compatibilizer and Nano-Montmorillonite Synergistic Agent. J. Appl. Polym. Sci. 2006, 101, 739–746. [Google Scholar] [CrossRef]
- Balakrishnan, H.; Hassan, A.; Isitman, N.; Kaynak, C. On the Use of Magnesium Hydroxide towards Halogen-Free Flame-Retarded Polyamide-6/Polypropylene Blends. Polym. Degrad. Stab. 2012, 97, 1447–1457. [Google Scholar] [CrossRef]
- Hanna, A.A.; Nour, M.A.; Souaya, E.R.; Sherief, M.A.; Abdelmoaty, A.S. Studies on the Flammability of Polypropylene/Ammonium Polyphosphate and Montmorillonite by Using the Cone Calorimeter Test. Open Chem. 2018, 16, 108–115. [Google Scholar] [CrossRef]
- Pappalardo, S.; Russo, P.; Acierno, D.; Rabe, S.; Schartel, B. The Synergistic Effect of Organically Modified Sepiolite in Intumescent Flame Retardant Polypropylene. Eur. Polym. J. 2016, 76, 196–207. [Google Scholar] [CrossRef]
- Wang, W.; Wen, P.; Zhan, J.; Hong, N.; Cai, W.; Gui, Z.; Hu, Y. Synthesis of a Novel Charring Agent Containing Pentaerythritol and Triazine Structure and Its Intumescent Flame Retardant Performance for Polypropylene. Polym. Degrad. Stab. 2017, 144, 454–463. [Google Scholar] [CrossRef]
- Jung, D.; Bhattacharyya, D. Keratinous Fiber Based Intumescent Flame Retardant with Controllable Functional Compound Loading. ACS Sustain. Chem. Eng. 2018, 6, 13177–13184. [Google Scholar] [CrossRef]
- Xu, B.; Wu, X.; Ma, W.; Qian, L.; Xin, F.; Qiu, Y. Synthesis and Characterization of a Novel Organic-Inorganic Hybrid Char-Forming Agent and Its Flame-Retardant Application in Polypropylene Composites. J. Anal. Appl. Pyrolysis 2018, 134, 231–242. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, Q.; Zhang, N.; Guo, X.; Yan, H. Preparation of a Novel Polysiloxane and Its Synergistic Effect with Ammonium Polyphosphate on the Flame Retardancy of Polypropylene. Polym. Degrad. Stab. 2018, 150, 73–85. [Google Scholar] [CrossRef]
- Wen, P.; Feng, X.; Kan, Y.; Hu, Y.; Yuen, R.K.K. Synthesis of a Novel Triazine-Based Polymeric Flame Retardant and Its Application in Polypropylene. Polym. Degrad. Stab. 2016, 134, 202–210. [Google Scholar] [CrossRef]
- Xu, Z.-Z.; Huang, J.-Q.; Chen, M.-J.; Tan, Y.; Wang, Y.-Z. Flame Retardant Mechanism of an Efficient Flame-Retardant Polymeric Synergist with Ammonium Polyphosphate for Polypropylene. Polym. Degrad. Stab. 2013, 98, 2011–2020. [Google Scholar] [CrossRef]
- Tang, W.; Qian, L.; Chen, Y.; Qiu, Y.; Xu, B. Intumescent Flame Retardant Behavior of Charring Agents with Different Aggregation of Piperazine/Triazine Groups in Polypropylene. Polym. Degrad. Stab. 2019, 169, 108982. [Google Scholar] [CrossRef]
- Yang, H.; Guan, Y.; Ye, L.; Wang, S.; Li, S.; Wen, X.; Chen, X.; Mijowska, E.; Tang, T. Synergistic Effect of Nanoscale Carbon Black and Ammonium Polyphosphate on Improving Thermal Stability and Flame Retardancy of Polypropylene: A Reactive Network for Strengthening Carbon Layer. Compos. Part B Eng. 2019, 174, 107038. [Google Scholar] [CrossRef]
- Shao, Z.-B.; Deng, C.; Tan, Y.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Appl. Mater. Interfaces 2014, 6, 7363–7370. [Google Scholar] [CrossRef]
- Deng, C.-L.; Du, S.-L.; Zhao, J.; Shen, Z.-Q.; Deng, C.; Wang, Y.-Z. An Intumescent Flame Retardant Polypropylene System with Simultaneously Improved Flame Retardancy and Water Resistance. Polym. Degrad. Stab. 2014, 108, 97–107. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, B.; Shang, S.; Zhang, H.; Shi, Y.; Yu, B.; Qi, C.; Dong, H.; Chen, X.; Yang, X. Surface Modification of Ammonium Polyphosphate by Supramolecular Assembly for Enhancing Fire Safety Properties of Polypropylene. Compos. Part B Eng. 2020, 181, 107588. [Google Scholar] [CrossRef]
- Qin, Z.; Li, D.; Lan, Y.; Li, Q.; Yang, R. Ammonium Polyphosphate and Silicon-Containing Cyclotriphosphazene: Synergistic Effect in Flame-Retarded Polypropylene. Ind. Eng. Chem. Res. 2015, 54, 10707–10713. [Google Scholar] [CrossRef]
- Wen, P.; Wang, X.; Wang, B.; Yuan, B.; Zhou, K.; Song, L.; Hu, Y.; Yuen, R.K.K. One-Pot Synthesis of a Novel s-Triazine-Based Hyperbranched Charring Foaming Agent and Its Enhancement on Flame Retardancy and Water Resistance of Polypropylene. Polym. Degrad. Stab. 2014, 110, 165–174. [Google Scholar] [CrossRef]
- Wen, P.; Wang, X.; Xing, W.; Feng, X.; Yu, B.; Shi, Y.; Tang, G.; Song, L.; Hu, Y.; Yuen, R.K.K. Synthesis of a Novel Triazine-Based Hyperbranched Char Foaming Agent and the Study of Its Enhancement on Flame Retardancy and Thermal Stability of Polypropylene. Ind. Eng. Chem. Res. 2013, 52, 17015–17022. [Google Scholar] [CrossRef]
Specimen Number | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base Polymer | PP | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | - | - | - | - | - |
Flame retardant (phr, part of a hundred resin) | MPP | 10 | 30 | 50 | - | - | - | - | - | - | - | - | - | - | - | - |
APP | - | - | - | 10 | 30 | 50 | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 | |
Modified Mg(OH)2 | - | - | - | - | - | - | - | - | - | 2.5 | 2.5 | 2.5 | 5 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, J.H.; Shim, S.B.; Lee, J.E. Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants. Polymers 2022, 14, 3524. https://doi.org/10.3390/polym14173524
Lee J, Park JH, Shim SB, Lee JE. Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants. Polymers. 2022; 14(17):3524. https://doi.org/10.3390/polym14173524
Chicago/Turabian StyleLee, Jinwoo, Jae Hyung Park, Seung Bo Shim, and Ji Eun Lee. 2022. "Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants" Polymers 14, no. 17: 3524. https://doi.org/10.3390/polym14173524
APA StyleLee, J., Park, J. H., Shim, S. B., & Lee, J. E. (2022). Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants. Polymers, 14(17), 3524. https://doi.org/10.3390/polym14173524