One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA Block Copolymers and Copolymer/Clay Composites
2.3. Characterizations and Testing
3. Results and Discussion
3.1. PLA-Based Block Copolymers: Structure and Properties
3.2. Nanocomposites of PLA Block Copolymer and Clay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bioplastics Market Data. Available online: https://www.european-bioplastics.org/market/ (accessed on 25 August 2022).
- Ho, K.-L.G.; Pometto, A.L.; Hinz, P.N.; Gadea-Rivas, A.; Briceño, J.A.; Rojas, A. Field Exposure Study of Polylactic Acid (PLA) Plastic Films in the Banana Fields of Costa Rica. J. Environ. Polym. Degrad. 1999, 7, 167–172. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Pratt, S.; Lant, P.A.; Laycock, B. The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation. In Plastics to Energy; Al-Salem, S.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 469–505. [Google Scholar]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Lorenzo, V.; Acosta, J.; de la Orden, M.U.; Martínez Urreaga, J. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). J. Environ. Manag. 2018, 216, 25–31. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of multi-extruded poly(lactic acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo mechanical cycles on the physico-chemical properties of PLA. Polym. Degrad. Stab. 2008, 93, 321–328. [Google Scholar] [CrossRef]
- Zhao, P.; Rao, C.; Gu, F.; Sharmin, N.; Fu, J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018, 197, 1046–1055. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102. [Google Scholar] [CrossRef]
- Jaszkiewicz, A.; Bledzki, A.K.; Duda, A.; Galeski, A.; Franciszczak, P. Investigation of Processability of Chain-Extended Polylactides During Melt Processing—Compounding Conditions and Polymer Molecular Structure. Macromol. Mater. Eng. 2014, 299, 307–318. [Google Scholar] [CrossRef]
- Sirisinha, K.; Samana, K. Improvement of melt stability and degradation efficiency of poly (lactic acid) by using phosphite. J. Appl. Polym. Sci. 2021, 138, 49951. [Google Scholar] [CrossRef]
- Luo, J.; Meng, X.; Gong, W.; Jiang, Z.; Xin, Z. Improving the stability and ductility of polylactic acid via phosphite functional polysilsesquioxane. RSC Adv. 2019, 9, 25151–25157. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Scaffaro, R.; Sutera, F.; Mistretta, M.C. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers 2018, 10, 18. [Google Scholar] [CrossRef]
- Meng, Q.; Heuzey, M.-C.; Carreau, P.J. Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym. Degrad. Stab. 2012, 97, 2010–2020. [Google Scholar] [CrossRef]
- Araújo, A.; Botelho, G.; Oliveira, M.; Machado, A.V. Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 2014, 88–89, 144–150. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Arena, M.; Gennari, M.; Camino, G. Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React. Funct. Polym. 2013, 73, 540–549. [Google Scholar] [CrossRef]
- Oh, J.K. Polylactide (PLA)-based amphiphilic block copolymers: Synthesis, self-assembly, and biomedical applications. Soft Matter 2011, 7, 5096–5108. [Google Scholar] [CrossRef]
- Stefaniak, K.; Masek, A. Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials 2021, 14, 5254. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Wang, H.; Jin, W.; Li, J. Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone. Mater. Sci. Eng. C 2009, 29, 889–893. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Dijkstra, P.J.; Feijen, J. Poly(ethylene glycol)–poly(L-lactide) star block copolymer hydrogels crosslinked by metal–ligand coordination. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1783–1791. [Google Scholar] [CrossRef]
- Koosomsuan, W.; Phinyocheep, P.; Sirisinha, K. Facile melt processing technique for the preparation of super ductile PLA–PEG multiblock copolymers: The roles of catalyst and antioxidant loadings. Polym. Degrad. Stab. 2018, 157, 160–174. [Google Scholar] [CrossRef]
- Luangkachao, J.; Sirisinha, K. Role of Sn-based and Ti-based catalysts on melt copolymerization of PLA-Polyols. IOP Conf. Ser. Mater. Sci. Eng. 2020, 773, 012058. [Google Scholar] [CrossRef]
- Han, L.; Yu, C.; Zhou, J.; Shan, G.; Bao, Y.; Yun, X.; Dong, T.; Pan, P. Enantiomeric blends of high-molecular-weight poly(lactic acid)/poly(ethylene glycol) triblock copolymers: Enhanced stereocomplexation and thermomechanical properties. Polymer 2016, 103, 376–386. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, W.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends. Polymer 2018, 146, 179–187. [Google Scholar] [CrossRef]
- Ljungberg, N.; Wesslén, B. Tributyl citrate oligomers as plasticizers for poly (lactic acid): Thermo-mechanical film properties and aging. Polymer 2003, 44, 7679–7688. [Google Scholar] [CrossRef]
- Jia, Z.; Tan, J.; Han, C.; Yang, Y.; Dong, L. Poly(ethylene glycol-co-propylene glycol) as a macromolecular plasticizing agent for polylactide: Thermomechanical properties and aging. J. Appl. Polym. Sci. 2009, 114, 1105–1117. [Google Scholar] [CrossRef]
- Gao, F. Clay/polymer composites: The story. Mater. Today 2004, 7, 50–55. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Ray, S.S. Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Compos. Part B Eng. 2021, 215, 108845. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Gómez, M.; Palza, H.; Quijada, R. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers 2016, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, V.; Pochan, D.J. Poly (l-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater. 2003, 15, 4317–4324. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A.; Cailloux, J.; Santana, O.; Maspoch, M.L.; Velazquez Infante, J.C. The Influence of the Clay Particles on the Mechanical Properties and Fracture Behavior of PLA/o-MMT Composite Films. Adv. Polym. Technol. 2015, 34, 21470. [Google Scholar] [CrossRef]
- Haji Abdolrsaouli, M.; Babaei, A.; Kaschta, J.; Nazockdat, H. Polylactide/organoclay nanocomposites: The effect of organoclay types on the structure development and the kinetic of cold crystallization. J. Vinyl Addit. Technol. 2019, 25, 48–58. [Google Scholar] [CrossRef]
- Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal properties of di- and triblock copolymers of poly(l-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer 2003, 44, 369–375. [Google Scholar] [CrossRef]
- Mei, T.; Zhu, Y.; Ma, T.; He, T.; Li, L.; Wei, C.; Xu, K. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. J. Biomed. Mater. Res. Part A 2014, 102, 3243–3254. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, W.; Yang, J.; Bei, J.; Wang, S. Biodegradable poly(l-lactide)-poly(ethylene glycol) multiblock copolymer: Synthesis and evaluation of cell affinity. Biomaterials 2003, 24, 2195–2203. [Google Scholar] [CrossRef]
- Sirisinha, K.; Somboon, W. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide). J. Appl. Polym. Sci. 2012, 124, 4986–4992. [Google Scholar] [CrossRef]
- Kajornprai, T.; Suttiruengwong, S.; Sirisinha, K. Manipulating Crystallization for Simultaneous Improvement of Impact Strength and Heat Resistance of Plasticized Poly(l-lactic acid) and Poly(butylene succinate) Blends. Polymers 2021, 13, 3066. [Google Scholar] [CrossRef]
- Premphet, K.; Horanont, P. Improving performance of polypropylene through combined use of calciuum carbonate and metallocene-produced impact modifier. Polym. -Plast. Technol. Eng. 2001, 40, 235–247. [Google Scholar] [CrossRef]
- Von Burkersroda, F.; Schedl, L.; Göpferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23, 4221–4231. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Yan, X.; Yang, C.; Chen, Z. Synthesis and Hydrophilic Performance of Poly(Lactic Acid)-Poly(Ethylene Glycol) Block Copolymers. Am. J. Anal. Chem. 2016, 07, 299–305. [Google Scholar] [CrossRef]
- Sheng, Y.; Yuan, Y.; Liu, C.; Tao, X.; Shan, X.; Xu, F. In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: Effect of PEG content. J. Mater. Sci. Mater. Med. 2009, 20, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
Properties | PLA Virgin | PLA Regrind | PLA-PEG Copolymer | PLA-PPG Copolymer |
---|---|---|---|---|
Weight average molecular weight (Mw) | 1.7 × 105 | 1.4 × 105 | 1.3 × 105 | 1.1 × 105 |
Number average molecular weight (Mn) | 8.1 × 104 | 7.4 × 104 | 5.0 × 104 | 4.8 × 104 |
Polydispersity index (PDI) | 1.96 | 1.83 | 2.78 | 2.29 |
Soft Segment [%] | Plasticized PLA | PLA-Based Block Copolymer | ||||
---|---|---|---|---|---|---|
Strength [MPa] | Modulus [MPa] | Elongation [%] | Strength [MPa] | Modulus [MPa] | Elongation [%] | |
PLA | 64.73 ± 3.50 | 2269.03 ± 119.48 | 5.69 ± 1.12 | |||
PPG | ||||||
10 | 40.74 ± 0.98 | 1971.66 ± 143.00 | 25.48 ± 60.40 | 45.40 ± 1.21 | 1811.50 ± 71.65 | 5.60 ± 0.16 |
15 | 34.83 ± 1.83 | 1893.64 ± 123.18 | 49.90 ± 16.01 | 33.89 ± 1.16 | 1613.92 ± 46.55 | 36.27 ± 3.67 |
20 | 32.31 ± 1.09 | 1804.29 ± 102.49 | 53.66 ± 10.34 | 25.23 ± 0.51 | 1418.90 ± 41.20 | 14.04 ± 4.24 |
PEG | ||||||
10 | 52.88 ± 0.57 | 1657.66 ± 34.34 | 25.71 ± 0.40 | 30.25 ± 1.98 | 952.31 ± 53.59 | 606.31 ± 27.71 |
15 | 41.37 ± 2.05 | 1095.88 ± 40.30 | 528.17 ± 17.82 | 26.90 ± 1.49 | 546.33 ± 32.25 | 644.52 ± 31.28 |
20 | 35.23 ± 1.61 | 549.12 ± 10.19 | 478.51 ± 20.81 | 24.92 ± 0.71 | 523.95 ± 19.94 | 620.14 ± 17.88 |
Samples | PEG Content [%] | Strength [MPa] | Modulus [MPa] | Elongation [%] |
---|---|---|---|---|
PLA virgin | - | 64.73 ± 3.50 | 2269.03 ± 119.48 | 5.69 ± 1.12 |
Block copolymer | 20 | 24.92 ± 0.71 | 523.95 ± 19.94 | 620.14 ± 17.88 |
Copolymer composite | 20 | 36.60 ± 1.20 | 1330.02 ± 60.58 | 87.54 ± 3.28 |
Reactive copolymer composite | 20 | 42.32 ± 1.13 | 1410.45 ± 70.58 | 562.15 ± 42.39 |
PLA regrind | - | 59.30 ± 1.70 | 2242 ± 201.02 | 6.15 ± 0.92 |
Block copolymer | 20 | 27.42 ± 1.16 | 740.04 ± 31.2 | 587.20 ± 45.41 |
Copolymer composite | 20 | 34.02 ± 2.17 | 954.29 ± 53.59 | 102.50 ± 17.00 |
Reactive copolymer composite | 20 | 35.98 ± 1.47 | 969.68 ± 58.92 | 441.79 ± 20.87 |
PLA regrind | ||||
Block copolymer | 10 | 26.25 ± 1.98 | 952.31 ± 53.59 | 572.31 ± 29.17 |
Copolymer composite | 10 | 37.60 ± 0.71 | 1328.74 ± 64.67 | 35.24 ± 3.28 |
Reactive copolymer composite | 10 | 39.49 ± 1.30 | 1417.70 ± 71.16 | 506.15 ± 42.39 |
System | Type of Copolymer | Mw [kDa] | PLA/PEG Ratio [wt/wt] | Strength [MPa] | Modulus [MPa] | Elongation [%] | Ref. |
---|---|---|---|---|---|---|---|
PLA-PEG copolymer (Mw of PEG = 4000) | multiblock | 95–130 | 80/20 | 25–28 | 524–740 | 580–620 | This work |
Copolymer composite (with 3 wt% clay) | multiblock | N/A | 80/20 | 34–37 | 954–1330 | 85–102 | |
90/10 | 37.6 | 1328 | 35 | ||||
Reactive copolymer composite (with 3 wt% clay) | multiblock | N/A | 80/20 | 36–42 | 970–1410 | 500 | |
90/10 | 39.5 | 1418 | 506 | ||||
PLA-PEG copolymer synthesized from ring-opening polymerization of lactide in the presence of PEG | diblock | 32.9 | 79/21 | 7.0 | 320 | 49 | [37] |
triblock | 57.5 | 78/22 | 7.0 | 225 | 134 | ||
multiblock | 145 | 48/52 | 32.6 | 28.4 | 546 | [38] | |
multiblock | 61.1 | 52/48 | 4.6 | 25.0 | 561 | ||
triblock | 28.0 | 76/24 | 4.0 | N/A | 6.0 | [39] | |
triblock | 49.8 | 87/13 | 11.7 | N/A | 6.8 | ||
multiblock | 55.3 | 75/25 | 22.1 | N/A | 469 | ||
multiblock | 66.8 | 87/13 | 25.2 | N/A | 59 | ||
Poly(butylene adipate-co-terephthalate) (PBAT) | N/A | N/A | N/A | 18.8 | 30 | 388 | [40] |
Poly(butylene succinate) (PBS) | N/A | N/A | N/A | 33.3 | 450 | 330 | [41] |
Polypropylene (PP) | N/A | N/A | N/A | 34.4 | 1620 | >350 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirisinha, K.; Wirasate, S.; Sirisinha, C.; Wattanakrai, N. One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers 2022, 14, 3642. https://doi.org/10.3390/polym14173642
Sirisinha K, Wirasate S, Sirisinha C, Wattanakrai N. One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers. 2022; 14(17):3642. https://doi.org/10.3390/polym14173642
Chicago/Turabian StyleSirisinha, Kalyanee, Supa Wirasate, Chakrit Sirisinha, and Noppasorn Wattanakrai. 2022. "One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility" Polymers 14, no. 17: 3642. https://doi.org/10.3390/polym14173642
APA StyleSirisinha, K., Wirasate, S., Sirisinha, C., & Wattanakrai, N. (2022). One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers, 14(17), 3642. https://doi.org/10.3390/polym14173642