Mattel’s Barbie: Investigation of a Symbol—Analysis of Polymeric Matrices and Degradation Phenomena for Sixteen Dolls from 1959 to 1976
Abstract
:1. Introduction
2. Materials and Methods
- 1959/1960: Barbies #1 and 2.
- 1964: Barbies #3 to 6.
- 1965: Barbies #7 and 8.
- 1972: Barbies #9 and 10.
- 1974/1976: Barbies #11 to 15.
3. Results
3.1. Imaging in Visible (VIS) Light and Ultraviolet-Induced Fluorescence (UV)
- The face in Barbies #14 and 15.
- The limbs in Barbies #5, 7, 9, 11, 12, 13, 14, and 15.
- The torsos of Barbies #4, 5, 6, 7, 8, 9, 10, 11, and 12.
3.2. Microscopic Observations
3.3. Fourier Transform Infrared Spectroscopy in the Attenuated Total Reflectance Mode (FT-IR ATR)
- Group I: Barbies #1, 2, 3, 4, 5;
- Group II: Barbies #6, 7, 8, 9, 10, 11, 12;
- Group III: Barbies #13, 14, 15.
4. Discussion
5. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shashoua, Y. Conservation of Plastics; Routledge: London, UK, 2020. [Google Scholar]
- Madden, O.; Learner, T. Preserving Plastics: An Evolving Material, a Maturing profession. In Conservation Perspectives; Getty Conservation Institute: Los Angeles, CA, USA, 2014; pp. 4–9. [Google Scholar]
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; Saal, F.S.V. Our plastic age. Philos. Trans. R. Soc. B 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühberger, C. Toys with Historical References as Part of a Material Culture: An Ethnographic Study on Children’s Bedrooms. In Proceedings of the 8th International Toy Research Association World Conference, International Toy Research Association (ITRA), Paris, France, 11–13 July 2018. [Google Scholar]
- de Vincentiis, M.; Aversa, R.; Tamburrino, F.; Apicella, A. Analysis of the Barbie Case Study: Social, Material and Technological Evolution Related to the Development of the Products. In Proceedings of the ATINER’s Conference Paper Series, Athens, Greece, 16–19 May 2016. [Google Scholar]
- Tulinski, H. Barbie as Cultural Compass: Embodiment, Representation, and Resistance Surrounding the World’s Most Iconized Doll; Sociology Student Scholarship; College of the Holy Cross: Worcester, MA, USA, 2017. [Google Scholar]
- Dos Santos Rolim, J. Female Empowerment: A Multimodal Analysis of Representations of Women in Images of Barbie Dolls’ Packages; Universidade Federal da Paraíba: João Pessoa, Brazil, 2020. [Google Scholar]
- Gerber, R. Barbie and Ruth: The Story of the World’s Most Famous Doll and the Woman Who Created Her; Harperbusiness: New York, NY, USA, 2010. [Google Scholar]
- Esfahani, N.N.; Carrington, V. (Re)scripting Barbie: Postphenomenology and Everyday Artefacts. In Phenomenology of Youth Cultures and Globalization; Routledge: London, UK, 2015; pp. 128–143. [Google Scholar]
- Bertrand, L.; Alban, F.; Graham, M. POPART Preservation of Plastic Artefacts in Museum Collections; Comité des Travaux Historiques et Scientifiques—CTHS: Paris, France, 2012. [Google Scholar]
- Saldìvar-Guerra, E.; Vivaldo-Lima, E. Handbook of Polymer Synthesis, Characterization, and Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Moura, J.C.V.P.; Oliveira-Campos, A.M.F.; Griffiths, J. The Effect of Additives on the photostability of Dyed Polymers. Dyes Pigment. 1997, 33, 173–196. [Google Scholar] [CrossRef]
- Gardette, J. Fundamental and Technical Aspects of the Photooxidation of Polymers. In Handbook of Polymer Degradation; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pino, F.; Fermo, P.; la Russa, M.F.; Ruffolo, S.; Comite, V.; Baghdachi, J.; Pecchioni, E.; Fratini, F.; Cappelletti, G. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environ. Sci. Pollut. Res. 2017, 24, 12608–12617. [Google Scholar] [CrossRef] [PubMed]
- Celina, M.; Ottesen, D.K.; Gillen, K.T.; Clough, R.L. FTIR emission spectroscopy applied to polymer degradation. Polym. Degrad. Stab. 1997, 58, 15–31. [Google Scholar] [CrossRef]
- Van Oosten, T. PUR Facts; Amsterdam University Press: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Izzo, F.C.; Carrieri, A.; Bartolozzi, G.; van Keulen, H.; Lorenzon, I.; Balliana, E.; Cucci, C.; Grazzi, F.; Picollo, M. Elucidating the composition and the state of conservation of nitrocellulose-based animation cells by means of non-invasive and micro-destructive techniques. J. Cult. Herit. 2019, 35, 254–262. [Google Scholar] [CrossRef]
- Izzo, F.C.; van Keulen, H.; Carrieri, A. Assessing the Condition of Complex Poly-Material Artworks by Py-GC-MS: The Study of Cellulose Acetate-Based Animation Cels. Separations 2022, 9, 131. [Google Scholar] [CrossRef]
- Feldman, D. Polymer Weathering: Photo-Oxidation. J. Polym. Environ. 2002, 10, 163–173. [Google Scholar] [CrossRef]
- Allen, N.S. Photochemistry and Photophysics of Polymer Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Miller, G.Z.; Harris, Z.E. Hazardous metals in vintage plastic toys measured by a handheld X-ray fluorescence spectrometer. J. Environ. Health 2015, 77, 8–13. [Google Scholar]
- Shashoua, Y. Inhibiting the Deterioration of Plasticized Poly (Vinyl Chloride)—A Museum Perspective; Denmark’s Technical University: Kongens Lyngby, Denmark, 2001. [Google Scholar]
- Lord, M.G. Forever Barbie: The Unauthorized Biography of a Real Doll; Walker & Company: New York, NY, USA, 2004. [Google Scholar]
- Macchia, A.; Biribicchi, C.; Carnazza, P.; Montorsi, S.; Sangiorgi, N.; Demasi, G.; Prestileo, F.; Cerafogli, E.; Colasanti, I.A.; Aureli, H.; et al. Multi-Analytical Investigation of the Oil Painting “Il Venditore di Cerini” by Antonio Mancini and Definition of the Best Green Cleaning Treatment. Sustainability 2022, 14, 3972. [Google Scholar] [CrossRef]
- Macchia, A.; Biribicchi, C.; Rivaroli, L.; Aureli, H.; Cerafogli, E.; Colasanti, I.A.; Carnazza, P.; Demasi, G.; La Russa, M.F. Combined Use of Non-Invasive and Micro-Invasive Analytical Investigations to Understand the State of Conservation and the Causes of Degradation of I Tesori del Mare (1901) by Plinio Nomellini. Methods Protoc. 2022, 5, 52. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Biribicchi, C.; Docci, A.; Alisi, C.; Prestileo, F.; Galiano, F.; Figoli, A.; Mancuso, R.; Gabriele, B.; et al. In Situ Application of Anti-Fouling Solutions on a Mosaic of the Archaeological Park of Ostia Antica. Materials 2022, 15, 5671. [Google Scholar] [CrossRef]
- Database of ATR-FT-IR Spectra of Various Materials. Available online: https://spectra.chem.ut.ee/ (accessed on 5 August 2019).
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extende region of 4000-80 cm−1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef]
- Munoz, L.P.; Baez, A.G.; McKinney, D.; Garelick, H. Characterisation of “flushable” and “non-flushable” commercial wet wipes using microRaman, FTIR spectroscopy and fluorescence microscopy: To flush or not to flush. Environ. Sci. Pollut. Res. 2018, 25, 20268–20279. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nie, X.A.; Jiang, J.C.; Zhou, Y.H. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel carnadol derived plasticizer. IOP Conf. Ser. Mater. Sci. Eng. 2017, 292, 012008. [Google Scholar] [CrossRef]
- Zaikov, G.E.; Jimenez, A. Polymer Analysis, Degradation and Stabilization; Nova Science Pub Inc.: New York, NY, USA, 2005. [Google Scholar]
- Andjelković, T.; Bogdanović, D.; Kostić, I.; Kocić, G.; Nikolić, G.; Pavlović, R. Phthalates leaching from plastic food and pharmaceutical contact materials by FTIR and GC-MS. Environ. Sci. Pollut. Res. 2021, 28, 31380–31390. [Google Scholar] [CrossRef] [PubMed]
- Hankett, J.M.; Welle, A.; Lahann, J.; Chen, Z. Evaluating UV/H2O2 Exposure as a DEHP Degradation Treatment for Plasticized PVC. J. Appl. Polym. Sci. 2014, 131, 40649. [Google Scholar] [CrossRef] [Green Version]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981. [Google Scholar] [CrossRef]
- Navarro, R.; Perez Perrino, M.; Gomez Tardajos, M.; Reinecke, H. Phthalate Plasticizers Covalently Bound to PVC: Plasticization with Suppressed Migration. Macromolecules 2010, 43, 2377–2381. [Google Scholar] [CrossRef]
- Demir, A.P.T.; Ulutan, S. Migration of Phthalate and Non-Phthalate Plasticizers Out of Plasticized PVC Films into Air. J. Appl. Polym. Sci. 2012, 128, 1948–1961. [Google Scholar]
- Peltzer, M.A.; Simoneau, C. Report of an Interlaboratory Comparison from the European Reference Laboratory for Food Contact Materials; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Piver, W.T. Organotin Compounds: Industrial Applications and Biological Investigation. Environ. Health Perspect. 1973, 4, 61–79. [Google Scholar] [CrossRef]
- Kim, D.Y.; Chun, S.; Mohamed, D.F.M.S.; Kim, H.; Kang, D.; An, J.; Park, S.; Kwon, H.; Kwon, J. Phthalate Plasticizers in Children’s Products and Estimation of Exposure: Importance of Migration Rate. Int. J. Environ. Res. Public Health 2020, 17, 8582. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.A.; Xu, Y.; Little, J.C.; Fristachi, A.F.; Rice, G.E.; Impellitteri, C.A. Predicting the Migration Rate of Dialkyl Organotins from PVC Pipe into Water. Environ. Sci. Technol. 2011, 45, 6902–6907. [Google Scholar] [CrossRef]
- Mandrile, L.; Vona, M.; Giovannozzi, A.M.; Salafranca, J.; Martra, G.; Rossi, A.M. Migration study of organotin compounds from food packaging by surface-enhanced Raman scattering. Talanta 2020, 220, 121408. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Puype, F.; Samsonek, J.; Knoop, J.; Egelkraut-Holtus, M.; Ortlieb, M. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market. Food Addit. Contam. Part A 2015, 32, 410–426. [Google Scholar] [CrossRef]
- Quang, T.D.; Trang, N.T.T.; Chinh, N.T.; Nguyen, G.; Lam, T.D.; Hoang, T. Sustainable composite materials based on ethylene-vinylacetate copolymer and organo-modified silica. Green Processing Synth. 2016, 5, 557–566. [Google Scholar]
- Poszwa, P.; Kędzierski, K.; Barszcz, B.; Nowicka, A.B. Fluorescence confocal microscopy as effective testing method of polypropylene fibers and single polymer composites. Polym. Test. 2016, 53, 174–179. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, L.; Sutton, D.; Wang, X.; Lin, T. Needleless Melt-Electrospinning of Polypropylene Nanofibres. J. Nanomater. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Quackenbos, H.M. Plasticizers in vinyl chloride resins. Ind. Eng. Chem. 1954, 46, 1335–1341. [Google Scholar] [CrossRef]
Barbie #1 (1959/60) | Barbie #2 (1959/60) | Barbie #3 (1964) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #4 (1964) | Barbie #5 (1964) | Barbie #6 (1964) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #7 (1965) | Barbie #8 (1965) | Barbie #9 (1972) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #10 (1972) | Barbie #11 (1974/76) | Barbie #12 (1974/76) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #13 (1974/76) | Barbie #14 (1974/76) | Barbie #15 (1974/76) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #1 (1959/60) | Barbie #2 (1959/60) | Barbie #3 (1964) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #4 (1964) | Barbie #5 (1964) | Barbie #6 (1964) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #7 (1965) | Barbie #8 (1965) | Barbie #9 (1972) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #10 (1972) | Barbie #11 (1974/76) | Barbie #12 (1974/76) | |||
VIS | UV | VIS | UV | VIS | UV |
Barbie #13 (1974/76) | Barbie #14 (1974/76) | Barbie #15 (1974/76) | |||
VIS | UV | VIS | UV | VIS | UV |
ID | Head | Torso | Legs | Arms | Back | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||
2 | NA | NA | ||||||||
3 | ||||||||||
4 | ||||||||||
5 | ||||||||||
6 | ||||||||||
7 | ||||||||||
8 | ||||||||||
9 | ||||||||||
10 | ||||||||||
11 | ||||||||||
12 | ||||||||||
13 | ||||||||||
14 | ||||||||||
15 |
ID | Year | Torso | Arms | Legs | Face | Hair |
---|---|---|---|---|---|---|
1 | 1959/1960 | PVC | PVC | PVC | PVC | PVDC |
2 | 1959/1960 | PVC | PVC | PVC | PVC | PVDC |
3 | 1964 | PVC | PVC | PVC | PVC | PVDC |
4 | 1964 | PVC | PVC | PVC | PVC | PVDC |
5 | 1964 | PVC | PVC | PVC | PVC | PVDC |
6 | 1964 | LDPE | PVC | PVC | PVC | PVDC |
7 | 1965 | LDPE | PVC | PVC | PVC | PVDC |
8 | 1965 | LDPE | PVC | PVC | PVC | PVDC |
9 | 1972 | LDPE | PVC | PVC | PVC | PVDC |
10 | 1972 | LDPE | PVC | PVC | PVC | PVDC |
11 | 1974/1976 | LDPE | PVC | PVC | PVC | PVDC |
12 | 1974/1976 | LDPE | PVC | PVC | PVC | PVDC |
13 | 1974/1976 | ABS | PVC | PVC | PVC | PP |
14 | 1974/1976 | ABS | LDPE | PVC | PVC | PVDC |
15 | 1974/1976 | ABS | PEVA | PVC | PVC | PVDC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchia, A.; Biribicchi, C.; Zaratti, C.; Testa Chiari, K.; D’Ambrosio, M.; Toscano, D.; Izzo, F.C.; La Russa, M.F. Mattel’s Barbie: Investigation of a Symbol—Analysis of Polymeric Matrices and Degradation Phenomena for Sixteen Dolls from 1959 to 1976. Polymers 2022, 14, 4287. https://doi.org/10.3390/polym14204287
Macchia A, Biribicchi C, Zaratti C, Testa Chiari K, D’Ambrosio M, Toscano D, Izzo FC, La Russa MF. Mattel’s Barbie: Investigation of a Symbol—Analysis of Polymeric Matrices and Degradation Phenomena for Sixteen Dolls from 1959 to 1976. Polymers. 2022; 14(20):4287. https://doi.org/10.3390/polym14204287
Chicago/Turabian StyleMacchia, Andrea, Chiara Biribicchi, Camilla Zaratti, Katiuscia Testa Chiari, Martina D’Ambrosio, Denise Toscano, Francesca Caterina Izzo, and Mauro Francesco La Russa. 2022. "Mattel’s Barbie: Investigation of a Symbol—Analysis of Polymeric Matrices and Degradation Phenomena for Sixteen Dolls from 1959 to 1976" Polymers 14, no. 20: 4287. https://doi.org/10.3390/polym14204287
APA StyleMacchia, A., Biribicchi, C., Zaratti, C., Testa Chiari, K., D’Ambrosio, M., Toscano, D., Izzo, F. C., & La Russa, M. F. (2022). Mattel’s Barbie: Investigation of a Symbol—Analysis of Polymeric Matrices and Degradation Phenomena for Sixteen Dolls from 1959 to 1976. Polymers, 14(20), 4287. https://doi.org/10.3390/polym14204287