Potential of a Composite Conduit with Bacterial Nanocellulose and Fish Gelatin for Application as Small-Diameter Artificial Blood Vessel
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Production of BNC Tubes
2.3. Preparation of the BNC/Gel Composite Tubes
2.4. Analysis of Fish Gelatin
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Morphology Analysis
2.7. Physical and Mechanical Properties
2.8. Hemocompatibility Tests
- (1)
- Hemolytic rate
- (2)
- Plasma recalcification profile
- (3)
- Whole blood clotting time
2.9. In Vitro Cytocompatibility
3. Results and Discussion
3.1. Gelatin Distribution Measurement and Morphology Inspection
3.2. Water Permeability and Mechanical Properties
3.3. Evaluation of Blood Compatibility of Composite Tubes
- (1)
- Hemolytic ratio
- (2)
- Plasma recalcification assay
- (3)
- Whole blood clotting time
3.4. In Vitro Cytocompatibility Assay
- (1)
- The growth of HUVECs
- (2)
- The growth of HSMCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Niklason, L.E.; Lawson, J.H. Bioengineered human blood vessels. Science 2020, 370, eaaw8682. [Google Scholar] [CrossRef] [PubMed]
- Bäckdahl, H.; Helenius, G.; Bodin, A.; Nannmark, U.; Johansson, B.R.; Risberg, B.; Gatenholm, P. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 2006, 27, 2141–2149. [Google Scholar] [CrossRef]
- Seifu, D.G.; Purnama, A.; Mequanint, K.; Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 2013, 10, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, Y.; Li, Q.; Turng, L.-S. Artificial small-diameter blood vessels: Materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J. Mater. Chem. B 2020, 8, 1801–1822. [Google Scholar] [CrossRef] [PubMed]
- Neufurth, M.; Wang, X.; Tolba, E.; Dorweiler, B.; Schröder, H.C.; Link, T.; Diehl-Seifert, B.; Müller, W.E.G. Modular small diameter vascular grafts with bioactive functionalities. PLoS ONE 2015, 23, e0133632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitão, A.F.; Gupta, S.; Silva, J.P.; Reviakine, I.; Gama, M. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf. B 2013, 111, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Schmitz-Rixen, T.; Hamilton, G.; Seifalian, A. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: A review. Med. Biol. Eng. Comput. 2007, 45, 327–336. [Google Scholar] [CrossRef]
- Bao, L.; Hong, F.F.; Li, G.; Hu, G.; Chen, L. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model. Mat. Sci. Eng. C-Mater. 2021, 122, 111922. [Google Scholar] [CrossRef]
- Bao, L.; Tang, J.; Hong, F.F.; Lu, X.; Chen, L. Physicochemical properties and in vitro biocompatibility of three bacterial nanocellulose conduits for blood vessel applications. Carbohydr. Polym. 2020, 239, 116246. [Google Scholar] [CrossRef]
- Hong, F.; Wei, B.; Chen, L. Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. Biomed. Res. Int. 2015, 2015, 560365. [Google Scholar] [CrossRef]
- Tang, J.; Li, X.; Bao, L.; Chen, L.; Hong, F.F. Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J. Chem. Technol. Biot. 2017, 92, 1218–1228. [Google Scholar] [CrossRef]
- Hu, G.; Chen, L.; Zhao, S.; Hong, F.F. Mercerization of tubular bacterial nanocellulose for control of the size and performance of small-caliber vascular grafts. Chem. Eng. J. 2022, 428, 131104. [Google Scholar] [CrossRef]
- Bao, L.; Hong, F.F.; Li, G.; Hu, G.; Chen, L. Improved performance of bacterial nanocellulose conduits by the introduction of silk fibroin nanoparticles and heparin for small-caliber vascular graft applications. Biomacromolecules 2021, 22, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, D.; Allen, J.; Hoshi, R.; Yang, J.; Lui, K.; Ameer, G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. A 2007, 82, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Jayakrishnan, A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005, 26, 3941–3951. [Google Scholar] [CrossRef]
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release 2005, 109, 256–274. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X.; Lin, Q.; Jiang, D. Bacterial cellulose/gelatin composites: In situ preparation and glutaraldehyde treatment. Cellulose 2014, 21, 2679–2693. [Google Scholar] [CrossRef]
- Kirdponpattara, S.; Phisalaphong, M.; Kongruang, S. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr. Polym. 2017, 177, 361–368. [Google Scholar] [CrossRef]
- Badii, F.; Howell, N.K. Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocoll. 2006, 20, 630–640. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, R.; Ding, M.; Li, L.; Tao, N.; Wang, X.; Zhong, J. Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. LWT 2020, 125, 109207. [Google Scholar] [CrossRef]
- Ninan, G.; Joseph, J.; Aliyamveettil, Z.A. A comparative study on the physical, chemical and functional properties of carp skin and mammalian gelatins. J. Food Sci. Technol. 2014, 51, 2085–2091. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Nowicki, M.; Sun, H.; Hann, S.Y.; Cui, H.; Esworthy, T.; Lee, J.D.; Plesniak, M.; Zhang, L.G. 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl. Mater. Inter. 2020, 12, 45904–45915. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Bao, L.; Tang, J.; Tang, M.; Ji, C.; Chen, L. Tubular Bacterial Nanocellulose Material and Preparation Method and Application Thereof. CN201810585866A, 2018. Available online: https://worldwide.espacenet.com (accessed on 6 November 2018).
- Bodin, A.; Ahrenstedt, L.; Fink, H.; Brumer, H.; Risberg, B.; Gatenholm, P. Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: Implications for tissue engineering. Biotechnol. Bioeng. 2007, 97, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, J.; Bao, L.; Chen, L.; Hong, F.F. Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels. Carbohydr. Polym. 2017, 178, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Wine, Y.; Cohen-Hadar, N.; Freeman, A.; Frolow, F. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol. Bioeng. 2007, 98, 711–718. [Google Scholar] [CrossRef]
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 13–36. [Google Scholar] [CrossRef]
- Mansur, H.S.; Costa, E.D.S.; Mansur, A.A.; Barbosa-Stancioli, E.F. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mat. Sci. Eng. C-Mater. 2009, 29, 1574–1583. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Pierron, D.; Harmad, M.-F. Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 2012, 19, 139–150. [Google Scholar] [CrossRef]
- Brown, E.E.; Laborie, M.-P.G.; Zhang, J. Glutaraldehyde treatment of bacterial cellulose/fibrin composites: Impact on morphology, tensile and viscoelastic properties. Cellulose 2011, 19, 127–137. [Google Scholar] [CrossRef]
- Friedenauer, S.; Berlet, H.H. Sensitivity and variability of the Bradford protein assayin the presence of detergents. Anal. Biochem. 1989, 178, 263–268. [Google Scholar] [CrossRef]
- Tang, J.; Bao, L.; Li, X.; Chen, L.; Hong, F.F. Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J. Mater. Chem. B 2015, 3, 8537–8547. [Google Scholar] [CrossRef] [PubMed]
- Guhados, G.; Wan, W.; Hutter, J.L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir ACS J. Surf. Colloids 2005, 21, 6642–6646. [Google Scholar] [CrossRef] [PubMed]
- Millon, L.E.; Wan, W.K. The polyvinyl alcohol-bacterial cellulose system as a newnanocomposite for biomedical applications. J. Biomed. Mater. Res. 2006, 79, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, L.; Zhang, M.; Ullah, M.W.; Liu, L.; Zhao, W.; Li, Y.; Ahmed, A.A.Q.; Cheng, H.; Shi, Z.; et al. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced anti-bacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Adv. Healthc. Mater. 2021, 10, e2100402. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, D.; Yang, J.; Lui, K.; Webb, A.; Ameer, G. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006, 27, 4315–4324. [Google Scholar] [CrossRef]
- Andrade, F.K.; Silva, J.P.; Carvalho, M.; Castanheira, E.M.S.; Soares, R.; Gama, M. Studies on the hemocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 2011, 98, 554–566. [Google Scholar] [CrossRef]
- Storrie, B. Evidence that differential packaging of the major plateletgranule proteins von Willebrand factor and fibrinogen can support theirdifferential release. J. Thormb. Haemost. 2007, 5, 2009–2016. [Google Scholar]
- Helms, C.C.; Marvel, M.; Zhao, W.; Stahle, M.; Vest, R.; Kato, G.J.; Lee, J.S.; Christ, G.; Gladwin, M.T.; Hantgan, R.R.; et al. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Haemost. 2013, 11, 2148–2154. [Google Scholar] [CrossRef]
Characteristics | BNC | BNC/Gel-0.25 | BNC/Gel-0.5 | BNC/Gel-1.0 | BNC/Gel-2.0 |
---|---|---|---|---|---|
Fish gelatin content (w/w%) | 0 | 0.15 ± 0.04 | 0.16 ± 0.05 | 0.18 ± 0.01 | 0.23 ± 0.039 |
Permeability (mL·cm−2·min−1) | 4.2 ± 0.4 | 4.2 ± 0.3 | 4.5 ± 0.4 | 4.6 ± 0.4 | 5.2 ± 0.3 |
Burst pressure (mmHg)/(MPa) | 660.1 ± 65.0/ (0.088 ± 0.008) | 592.6 ± 64.0/ (0.079 ± 0.009) | 517.5 ± 54.5/ (0.069 ± 0.007) | 465.0 ± 53.9/ (0.062 ± 0.007) | 425.0 ± 46.3/ (0.057 ± 0.006) |
Tensile strength (MPa) | 0.51 ± 0.01 | 0.55 ± 0.09 | 0.62 ± 0.06 | 0.72 ± 0.05 | 0.85 ± 0.02 |
Young’s modulus (MPa) | 0.98 ± 0.10 | 1.01 ± 0.15 | 1.09 ± 0.22 | 1.07 ± 0.18 | 1.19 ± 0.11 |
Elongation at break (%) | 38.6 ± 0.5 | 36.6 ± 0.3 | 38.8 ± 0.5 | 41.6 ± 0.5 | 43.9 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, L.; Li, C.; Tang, M.; Chen, L.; Hong, F.F. Potential of a Composite Conduit with Bacterial Nanocellulose and Fish Gelatin for Application as Small-Diameter Artificial Blood Vessel. Polymers 2022, 14, 4367. https://doi.org/10.3390/polym14204367
Bao L, Li C, Tang M, Chen L, Hong FF. Potential of a Composite Conduit with Bacterial Nanocellulose and Fish Gelatin for Application as Small-Diameter Artificial Blood Vessel. Polymers. 2022; 14(20):4367. https://doi.org/10.3390/polym14204367
Chicago/Turabian StyleBao, Luhan, Can Li, Man Tang, Lin Chen, and Feng F. Hong. 2022. "Potential of a Composite Conduit with Bacterial Nanocellulose and Fish Gelatin for Application as Small-Diameter Artificial Blood Vessel" Polymers 14, no. 20: 4367. https://doi.org/10.3390/polym14204367
APA StyleBao, L., Li, C., Tang, M., Chen, L., & Hong, F. F. (2022). Potential of a Composite Conduit with Bacterial Nanocellulose and Fish Gelatin for Application as Small-Diameter Artificial Blood Vessel. Polymers, 14(20), 4367. https://doi.org/10.3390/polym14204367