Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TiO2 and Cu-Doped TiO2 Composite Preparations
2.3. Characterization of the Prepared Materials
2.4. Electrochemical Characterization
3. Results
3.1. XRD Analysis
3.2. Morphological Characterization
3.3. Sorption and Desorption Isotherms
3.4. Electrochemical Characterization
3.5. Dielectric Spectroscopy Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahirrao, D.J.; Wilson, H.M.; Jha, N. TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl. Surf. Sci. 2019, 491, 765–778. [Google Scholar] [CrossRef]
- Da Silva, E.P.; Rubira, A.F.; Ferreira, O.P.; Silva, R.; Muniz, E.C. In situ growth of manganese oxide nanosheets over titanium dioxide nanofibers and their performance as active material for supercapacitor. J. Colloid Interface Sci. 2019, 555, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elnaiem, A.M.; Hamdalla, T.A.; Seleim, S.M.; Hanafy, T.A.; Aljohani, M.; Rashad, M. Correction to: Influence of incorporation of gallium oxide nanoparticles on the structural and optical properties of polyvinyl alcohol polymer. J. Inorg. Org. Polym. Mater. 2021, 31, 4163. [Google Scholar] [CrossRef]
- Ali, N.A.; Abd-Elnaiem, A.M.; Hussein, S.I.; Khalil, A.S.; Alamri, H.R.; Assaedi, H.S. Thermal and Mechanical Properties of Epoxy Resin Functionalized Copper and Graphene Hybrids Using In-situ Polymerization Method. Curr. Nanosci. 2021, 17, 494–502. [Google Scholar] [CrossRef]
- Khedekar, V.V.; Zaeem, S.M.; Das, S. Graphene-metal oxide nanocomposites for supercapacitors: A perspective review. Adv. Mater. Lett. 2018, 9, 2–19. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.H.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, F.; Guo, Y.; Wang, S.; Liu, Y. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227–2233. [Google Scholar] [CrossRef]
- Heng, I.; Lai, C.W.; Juan, J.C.; Numan, A.; Iqbal, J.; Teo, E.Y.L. Low-temperature synthesis of TiO2 nanocrystals for high performance electrochemical supercapacitors. Ceram. Int. 2019, 45, 4990–5000. [Google Scholar] [CrossRef]
- Guan, C.; Xia, X.; Meng, N.; Zeng, Z.; Cao, X.; Soci, C.; Zhang, H.; Fan, H.J. Hollow core–shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 59085–59090. [Google Scholar] [CrossRef]
- Dhonde, M.; Sahu, K.; Murty, V.V.S.; Nemala, S.S.; Bhargava, P.; Mallick, S. Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co-doped TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 6274. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.; Sun, L.; He, Y.; Wu, Y.; Li, Z. Capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Met. 2009, 28, 231–236. [Google Scholar] [CrossRef]
- Ning, X.; Wang, X.; Yu, X.; Zhao, J.; Wang, M.; Li, H.; Yang, Y. Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method. Sci. Rep. 2016, 6, 22634. [Google Scholar] [CrossRef]
- Qian, Y.; Du, J.; Kang, D.J. Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater. 2019, 273, 148–155. [Google Scholar] [CrossRef]
- Soares, G.B.; Ribeiro, R.A.P.; de Lazaro, S.R.; Ribeiro, C. Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2:N. RSC Adv. 2016, 6, 89687–89698. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Sahu, K.; Dhonde, M.; Murty, V.V.S. Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell. Solar Energy 2020, 203, 296–303. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Archana, P.S.; Vidyadharan, B.; Misnon, I.I.; Vijayan, B.L.; Nair, V.M.; Gupta, A.; Jose, R. Modification of capacitive charge storage of TiO2 with nickel doping. J. Alloys Compd. 2016, 684, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Singh, N.; Sharma, Y.; Gupta, R.K. Improved supercapacitive performance in electrospun TiO2 nanofibers through Ta-doping for electrochemical capacitor applications. Catal. Today 2019, 325, 33–40. [Google Scholar] [CrossRef]
- Liang, S.; Wang, X.; Qi, R.; Cheng, Y.-J.; Xia, Y.; Müller-Buschbaum, P.; Hu, X. Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Adv. Func. Mater. 2022, 32, 2201675. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zhou, L.; Maia, Y.W.; Huang, H. Exceptional electrochemical performance of porous TiO2–carbon nanofibers for lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 3875–3880. [Google Scholar] [CrossRef]
- Meier, L.A.; Alvarez, A.E.; García, S.G.; del Barrio, M.C. Formation of Cu and Ni nanowires by electrodeposition. Procedia Mater. Sci. 2015, 8, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.; Moustafa, S.; Taha, S.A.; Abd-Elnaiem, A.M. Morphological characterization and refractive index calculation of anodized titanium (99.7%) foil in HF-ethanol electrolyte. Mater. Res. Express 2018, 6, 035026. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Samoila, P.; Olaru, N.; Bele, A.; Airinei, A. Novel electrospun membranes based on PVDF fibers embedding lanthanide doped ZnO for adsorption and photocatalytic degradation of dye organic pollutants. Mater. Res. Bull. 2021, 141, 111376. [Google Scholar] [CrossRef]
- Lal, M.S.; Lavanya, T.; Ramaprabhu, S. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite. Beilstein J. Nanotechnol. 2019, 10, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Chauhan, H.; Satpati, B.; Deka, S. Yolk type asymmetric Ag–Cu2O hybrid nanoparticles on graphene substrate as efficient electrode material for hybrid supercapacitors. J. Phys. Chem. 2018, 233, 85–104. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Samoila, P.; Airinei, A.; Olaru, N.; Rotaru, A.; Romanitan, C.; Tudoran, L.B.; Suchea, M. Cu/TiO2 composite nanofibers with improved photocatalytic performance under UV and UV-visible light irradiation. Surf. Interfaces 2022, 28, 101644. [Google Scholar] [CrossRef]
- Cojocaru, C.; Dorneanu, P.P.; Airinei, A.; Olaru, N.; Samoila, P.; Rotaru, A. Design and evaluation of electrospun polysulfone fibers and polysulfone/NiFe2O4 nanostructured composite as sorbents for oil spill cleanup. J. Taiwan Inst. Chem. Eng. 2017, 70, 267–281. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.J. TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers 2019, 11, 899. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, N.; Pax, R.A.; Gray, E.; Mac, A. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid. State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Pascariu, P.; Homocianu, M.; Cojocaru, C.; Samoila, P.; Airinei, A.; Suchea, M. Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 2019, 476, 16–27. [Google Scholar] [CrossRef]
- Türkyılmaz, Ş.Ş.; Güy, N.; Özacar, M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J. Photochem. Photobiol. A Chem. 2017, 341, 39–50. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Homocianu, M.; Samoila, P.; Dascalu, A.; Suchea, M. New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: Effects of thermal treatment and doping loadings. Ceram. Int. 2022, 48, 4953–4964. [Google Scholar] [CrossRef]
- Mahmood, P.H.; Amiri, O.; Ahmed, S.S.; Hama, J.R. Simple microwave synthesis of TiO2/NiS2 nanocomposite and TiO2/NiS2/Cu nanocomposite as an efficient visible driven photocatalyst. Ceram. Int. 2019, 45, 14167–14172. [Google Scholar] [CrossRef]
- Ganesh, I.; Kumar, P.P.; Annapoorna, I.; Sumliner, J.M.; Ramakrishna, M.; Hebalkar, N.Y.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 2014, 293, 229–247. [Google Scholar] [CrossRef]
- Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films. Electrochim. Acta 2013, 114, 68–75. [Google Scholar] [CrossRef]
- Poudel, M.B.; Yu, C.; Kim, H.J. Synthesis of conducting bifunctional polyaniline@Mn-TiO2 nanocomposites for supercapacitor electrode and visible light driven photocatalysis. Catalysts 2020, 10, 546. [Google Scholar] [CrossRef]
- Pan, C.; Sun, H.; Gao, J.; Hu, Y.; Wang, J. Simplified synthesis of 3D flexible reduced graphene oxide-wrapped NiCo2O4 nanowires for high-performance supercapacitor. Nanosci. Nanotechnol. Lett. 2018, 10, 358–364. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168. [Google Scholar] [CrossRef]
- Li, P.; Ruan, C.; Xu, J.; Xie, Y. A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO4/CoO nanohybrid on nickel foam. Nanoscale 2019, 11, 13639–13649. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Wang, H.; Zhan, J.; Zhu, Y.; Zhang, Q.; Shen, Q.; Yang, H. TiO2-C nanowire arrays@polyaniline core-shell nanostructures on carbon cloth for high performance supercapacitors. Appl. Surf. Sci. 2019, 493, 1125–1133. [Google Scholar] [CrossRef]
- Haque, M.; Li, Q.; Kuzmenko, V.; Smith, A.D.; Enoksson, P. Ionic liquid electrolyte for supercapacitor with high temperature compatibility. J. Phys. Conf. Ser. 2017, 922, 012011. [Google Scholar] [CrossRef]
- He, X.; Yang, C.P.; Zhang, G.L.; Shi, D.W.; Huang, Q.A.; Xiao, H.B.; Liu, Y.; Xiong, R. Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater. Des. 2016, 106, 74–80. [Google Scholar] [CrossRef]
- Li, H.; Wu, D.; Zhu, X.; Yang, C.; Liu, D.; Chen, X.; Song, Y.; Lu, L. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 2014, 116, 129–136. [Google Scholar] [CrossRef]
- Vidyadharan, B.; Archana, P.S.; Ismail, J.; Yusoff, M.M.; Jose, R. Improved supercapacitive charge storage in electrospun niobium doped titania nanowires. RSC Adv. 2015, 5, 50087–50097. [Google Scholar] [CrossRef]
- Samet, M.; Levchenko, V.; Boiteux, G.; Seytre, G.; Kallel, A.; Serghei, A. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies, and scaling laws. J. Chem. Phys 2015, 142, 194703. [Google Scholar] [CrossRef]
- Asandulesa, M.; Kostromin, S.; Aleksandrov, A.; Tameev, A.; Bronnikov, S. The effect of PbS quantum dots on molecular dynamics and conductivity of PTB7:PC71BM bulk heterojunction as revealed by dielectric spectroscopy. Phys. Chem. Chem. Phys. 2022, 24, 9589–9596. [Google Scholar] [CrossRef]
- Pochard, I.; Vall, M.; Eriksson, J.; Farineau, C.; Cheung, O.; Frykstrand, S.; Welch, K.; Stromme, M. Amine-functionalised mesoporous magnesium carbonate: Dielectric spectroscopy studies of interactions with water and stability. Mater. Chem. Phys. 2018, 216, 332–338. [Google Scholar] [CrossRef]
- Asandulesa, M.; Kostromin, S.; Tameev, A.; Aleksandrov, A.; Bronnikov, S. Molecular dynamics and conductivity of a PTB7:PC71BM photovoltaic polymer blend: A dielectric spectroscopy study. ACS Appl. Polym. Mater. 2021, 3, 4869–4878. [Google Scholar] [CrossRef]
- Larsson, O.; Said, E.; Berggren, M.; Crispin, X. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Adv. Funct. Mater. 2009, 19, 3334–3341. [Google Scholar] [CrossRef]
Samples | 2θ (º) | (hkl) | dhkl (Å) | FWHM (º) | D (nm) | a (Å) | c (Å) | ε (%) | L (nm) | V (Å3) |
---|---|---|---|---|---|---|---|---|---|---|
T2 | 27.47 | (110) | 3.244 | 0.17 | 48.05 | 4.588 | - | 0.174 | 4.035 | 53.90 |
36.11 | (101) | 2.485 | 0.21 | 39.67 | - | 2.957 | 0.203 | - | - | |
CT2 | 27.45 | (110) | 3.247 | 0.34 | 23.98 | 4.592 | - | 0.348 | 4.041 | 53.99 |
36.10 | (101) | 2.486 | 0.35 | 23.80 | - | 2.957 | 0.268 | - | - | |
CT3 | 27.47 | (110) | 3.244 | 0.42 | 19.41 | 4.589 | - | 0.429 | 4.037 | 53.91 |
36.11 | (101) | 2.485 | 0.38 | 21.92 | - | 2.956 | 0.291 | - | - | |
CT4 | 27.41 | (110) | 3.251 | 0.42 | 19.41 | 4.598 | - | 0.431 | 4.050 | 54.25 |
36.03 | (101) | 2.491 | 0.40 | 20.82 | - | 2.963 | 0.308 | - | - |
Sample | Sorption Capacity, % d.b. | Average Pore Size, nm | BET Data | |
---|---|---|---|---|
Area, m2/g | Monolayer, g/g | |||
T2 | 9.86 | 1.77 | 112 | 0.031 |
CT2 | 12.30 | 4.31 | 57.2 | 0.0163 |
CT3 | 8.30 | 2.41 | 69 | 0.0196 |
CT4 | 10.10 | 3.19 | 63.5 | 0.0181 |
Electroactive Materials | Specific Gravimetric Capacitance (F·g−1) | Specific Capacitance (F·g−1) | Energy Density (Wh·kg−1) | Power Density (W·kg−1) |
---|---|---|---|---|
T2 | 526 | 84 | 5.69 | 585.28 |
CT2 | 1183.89 | 664 | 45.20 | 723.14 |
CT3 | 456 | 235 | 16.05 | 540.12 |
CT4 | 640 | 361 | 24.56 | 559.55 |
Material | Preparation Method | Electrolyte | CSP (F·g−1) | Specific Energy (Wh·Kg−1) | Specific Power (W·Kg−1) | CS Retention (%)/Cycle Number | Ref. |
---|---|---|---|---|---|---|---|
Nb-doped TiO2 | 3 M KOH | 52 | 770 | 16.3 | 100/5000 | [45] | |
Ta-doped TiO2 | electrospinning | 1M H2SO4 | 199 at 5 mV/s | 11.25 | 100.49 | 100/5000 at a current density of 1 A g−1 | [18] |
Co-doped TiO2 | solvothermal method | 3 M KOH | 352 at a current density of 0.5 A/g | - | - | 97/3000 at a current density of 0.5 A g−1 | [14] |
Ni-doped TiO2 | electrospinning | 3 M KOH | 200 at 2 mV/s | - | - | 100/5000 | [17] |
0.5%Cu-doped TiO2 | electrospinning | 1 M KOH | 1183.89 at 0.15 V/s | 45.20 | 723.14 | 94/100 | this work |
Sample | ε′ (1 kHz) | ε″ (1 kHz) | σ (S/cm) (1 Hz) |
---|---|---|---|
T2 | 15.1 | 5.7 | 1 × 10−10 |
CT2 | 17.5 | 7.7 | 6 × 10−10 |
CT3 | 15.4 | 4.8 | 2 × 10−10 |
CT4 | 9.4 | 3.4 | 4 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascariu, P.; Homocianu, M.; Vacareanu, L.; Asandulesa, M. Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers 2022, 14, 4739. https://doi.org/10.3390/polym14214739
Pascariu P, Homocianu M, Vacareanu L, Asandulesa M. Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers. 2022; 14(21):4739. https://doi.org/10.3390/polym14214739
Chicago/Turabian StylePascariu, Petronela, Mihaela Homocianu, Loredana Vacareanu, and Mihai Asandulesa. 2022. "Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics" Polymers 14, no. 21: 4739. https://doi.org/10.3390/polym14214739
APA StylePascariu, P., Homocianu, M., Vacareanu, L., & Asandulesa, M. (2022). Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers, 14(21), 4739. https://doi.org/10.3390/polym14214739