Effect of the Current on the Fire Characteristics of Overloaded Polyvinyl Chloride Copper Wires
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.2. Experimental
2.2.1. Overloading Procedure
2.2.2. Cone Calorimeter
3. Results and Discussion
3.1. Ignition of Wires
3.2. Heat Release Rate
3.3. Gas Emissions
3.4. Residues and Mass Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Sun, Y.; Gao, Y.; Sun, J.; Lyu, H.-F.; Yu, T.; Yang, S.; Wang, Y. Analysis of overload induced arc formation and beads characteristics in a residential electrical cable. Fire Saf. J. 2022, 131, 103626. [Google Scholar] [CrossRef]
- National Fire Protection Association. Guide for Fire and Explosion Investigations, 2021 ed.; (NFPA 921); National Fire Protection Association: Quincy, MA, USA, 2020. [Google Scholar]
- Zhang, Z.W. Application and development of irradiation cured PVC insulated wire and cable. Electr. Wire Cable 2004, 3, 13–14. [Google Scholar] [CrossRef]
- McGrattan, K.; Lock, A.; Marsh, N.; Nyden, M. Cable Heat Release, Ignition, and Spread in Tray Installations during Fire (CHRISTIFIRE): Phase 1-Horizontal Trays, Contractor Report, NUREG/CR-7010. 2012. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905788 (accessed on 1 October 2022).
- McGrattan, K.; Bareham, S. Cable Heat Release, Ignition, and Spread in Tray Installations during Fire (CHRISTIFIRE) Phase 2: Vertical Shafts and Corridors, NUREG/CR-7010. 2013. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913000 (accessed on 1 October 2022).
- Meinier, R.; Sonnier, R.; Zavaleta, P.; Suard, S.; Ferry, L. Ferry, Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 342, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, J.; Zhu, H.; Wang, X. Study on Combustion Characteristics of Cable Based on Cone Calorimeter. Energies 2022, 15, 1904. [Google Scholar] [CrossRef]
- Hirschler, M.M. Comparison of large-and small-scale heat release tests with electrical cable. Fire Mater. 1994, 18, 61–76. [Google Scholar] [CrossRef]
- Barnes, M.A.; Briggs, P.J.; Hirschler, M.M.; Matheson, A.F.; O’Neill, T.J. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part II Tests on Cable. Fire Mater. 1996, 20, 17–37. [Google Scholar] [CrossRef]
- ISO 5660-1; Fire Tests-Reaction to Fire-Rate Ofheat Release from Building Products. International Standards Organization: Geneva, Switzerland, 1993.
- Babrauskas, V. Heat release rates. In SFPE Handbook of Fire Protection Engineering; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Emanuelsson, V.; Simonson, M.; Gevert, T. The effect of accelerated ageing of building wires. Fire Mater. 2007, 31, 311–326. [Google Scholar] [CrossRef]
- Magalie, C.; Anne-Sophie, C.; Rodolphe, S.; Laurent, F.; Emmanuelle, G.; Christian, L. Fire behaviour of electrical cables in cone calorimeter: Influence of cables structure and layout. Fire Saf. J. 2018, 99, 12–21. [Google Scholar] [CrossRef]
- Kim, M.H.; Seo, H.J.; Lee, S.K.; Lee, M.C. Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants. Energies 2021, 14, 2003. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J. Thermal. Anal. Calorim. 2019, 135, 3115–3122. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. Comparative thermal decomposition characteristics and fire behaviors of commercial cables. J. Anal. Calorim. 2021, 144, 1209–1218. [Google Scholar] [CrossRef]
- Zhang, B.S.; Zhang, J.Q.; Li, Q.; Wang, L.F.; Xie, H.; Fan, M.H. Effects of Insulating Material Ageing on Ignition Time and Heat Release Rate of the Flame Retardant Cables. Procedia. Eng. 2018, 211, 972–978. [Google Scholar] [CrossRef]
- GB/T 19666-2019; General Rules for Flame Retardant and Fire Resistant Wire and Cable or Optical Fiber Cable. EcoSafene: Xiamen, China, 2022.
- IX-IEC, IEC 60331-2 Standard. Available online: https://www.cssn.net.cn/cssn/productDetail/10084e6b261824b27e5650d5429eb8d7 (accessed on 19 April 2009).
- Hopkins, D.; Quintiere, J.G. Material fire properties and predictions for thermoplastics. Fire Saf. J. 1996, 26, 241–268. [Google Scholar] [CrossRef]
- Rhodes, B.T.; Quintiere, J.G. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf. J. 1996, 26, 221–240. [Google Scholar] [CrossRef]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Thornton, W. XV. The relation of oxygen to the heat of combustion of organic compounds. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 33, 196–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.W.; Chen, A.P. Research on combustion performance of wood and high polymer by conical calorimeter. Fire Ence Technol. 2009, 28, 80–82. [Google Scholar]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Bi, K.; Cheng, C.; Chow, W. Burning behavior of cable tray located on a wall with different cable arrangements. Fire Mater. 2019, 43, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Courty, L.; Garo, J. External heating of electrical cables and auto-ignition investigation. J. Hazard. Mater. 2017, 321, 528–536. [Google Scholar] [CrossRef]
- Matheson, A.F.; Charge, R.; Corneliussen, T. Corneliussen, Properties of PVC compounds with improved fire performance for electrical cables. Fire Saf. J. 1992, 19, 55–72. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Wang, X.; He, J.; Wang, J. Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter. Materials 2018, 11, 1997. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Chen, W.-L.; Liang, C.; Wang, W.-F.; Xiao, Y.; Wang, C.-P.; Shu, C.-M. Correction model for CO detection in the coal combustion loss process in mines based on GWO-SVM. J. Loss Prev. Proc. 2021, 71, 104439. [Google Scholar] [CrossRef]
- Ferng, Y.; Liu, C. Investigating the burning characteristics of electric cables used in the nuclear power plant by way of 3-D transient FDS code. Nucl. Eng. Des. 2011, 241, 88–94. [Google Scholar] [CrossRef]
- Seo, H.J.; Kim, N.K.; Lee, M.C.; Lee, S.K.; Moon, Y.S. Investigation into the toxicity of combustion products for CR/EPR cables based on aging period. J. Mech. Sci. Technol. 2020, 34, 1785–1794. [Google Scholar] [CrossRef]
- Fontaine, G.; Ngohang, F.-E.; Gay, L.; Bourbigot, S. Investigation of the Contribution to Fire of Electrical Cable by a Revisited Mass Loss Cone. In Fire Science and Technology 2015; Harada, K., Matsuyama, K., Himoto, K., Nakamura, Y., Wakatsuki, K., Eds.; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, H.; Tong, L. Experimental study on the fire protection properties of PVC sheath for old and new cables. J. Hazard. Mater. 2010, 179, 373–381. [Google Scholar] [CrossRef]
Multi-Stranded PVC Copper Wire | |
---|---|
Model | BVR |
Number of core | 19 |
Inner diameter | 3.3 mm |
Outside diameter | 4.1 mm |
Cross-sectional area | 2.5 mm2 |
Safe rate current | 20 A |
Number | Current Times (Ie) | Current Value (A) |
---|---|---|
1 | 1.5 | 30 |
2 | 2 | 40 |
3 | 2.5 | 50 |
4 | 3 | 60 |
5 | 3.5 | 70 |
Current Times (Ie) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Heat Flux (kW/m2) | 1.5 | 2 | 2.5 | 3 | 3.5 | |||||||||||
Number | 1 | 2 | average | 1 | 2 | average | 1 | 2 | average | 1 | 2 | average | 1 | 2 | average | |
pHRR (kW/m2) | 25 | 132.2 | 134.9 | 133.5 | 141 | 140. | 140.6 | 136.9 | 149.8 | 143. | 147.7 | 150.9 | 149.3 | 96.4 | 85.1 | 90.8 |
30 | 146.1 | 144.2 | 145.1 | 147.0 | 139.5 | 143.2 | 155.2 | 124.5 | 139.8 | 152.3 | 132.3 | 142.3 | 116.8 | 116.8 | 116.8 | |
35 | 184.5 | 156.1 | 170.3 | 175.1 | 152.2 | 163.6 | 175.0 | 149.2 | 162.1 | 164.9 | 144.1 | 154.5 | 142.8 | 129.4 | 136.1 | |
40 | 197.1 | 169.8 | 183.5 | 177.4 | 147.6 | 162.5 | 170.9 | 156.5 | 163.7 | 185.4 | 171.8 | 178.6 | 146.6 | 127.1 | 136.9 | |
50 | 203.3 | 173.8 | 188.6 | 197.5 | 197.6 | 197.5 | 207.8 | 192.1 | 200.0 | 217.7 | 189.7 | 203.7 | 190.6 | 150.9 | 170.8 | |
t-pHRR (s) | 25 | 101 | 99 | 100 | 97 | 103 | 100 | 96 | 99 | 97 | 92 | 97 | 94 | 132 | 152 | 142 |
30 | 88 | 73 | 80 | 83 | 83 | 83 | 83 | 106 | 94 | 93 | 93 | 93 | 93 | 106 | 99 | |
35 | 76 | 68 | 72 | 85 | 68 | 76 | 83 | 69 | 76 | 83 | 82 | 82 | 88 | 80 | 84 | |
40 | 74 | 62 | 68 | 73 | 83 | 78 | 67 | 65 | 66 | 71 | 67 | 69 | 76 | 71 | 73 | |
50 | 62 | 51 | 56 | 55 | 53 | 54 | 61 | 52 | 56 | 61 | 48 | 54 | 63 | 61 | 62 | |
FGI (kW/m2) | 25 | 1.30 | 1.36 | 1.33 | 1.45 | 1.36 | 1.40 | 1.42 | 1.51 | 1.47 | 1.60 | 1.55 | 1.58 | 0.73 | 0.56 | 0.64 |
30 | 1.66 | 1.97 | 1.81 | 1.77 | 1.68 | 1.72 | 1.87 | 1.17 | 1.52 | 1.63 | 1.42 | 1.53 | 1.25 | 1.10 | 1.17 | |
35 | 2.42 | 2.29 | 2.36 | 2.06 | 2.23 | 2.14 | 2.10 | 2.16 | 2.13 | 1.98 | 1.75 | 1.87 | 1.62 | 1.61 | 1.62 | |
40 | 2.66 | 2.73 | 2.70 | 2.43 | 1.77 | 2.10 | 2.55 | 2.40 | 2.48 | 2.61 | 2.56 | 2.58 | 1.92 | 1.79 | 1.86 | |
50 | 3.28 | 3.40 | 3.34 | 3.59 | 3.72 | 3.66 | 3.40 | 3.69 | 3.55 | 3.56 | 3.95 | 3.76 | 3.02 | 2.47 | 2.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Lin, Q.; Li, Y.; Lyu, H.; Wang, H.; Sun, J. Effect of the Current on the Fire Characteristics of Overloaded Polyvinyl Chloride Copper Wires. Polymers 2022, 14, 4766. https://doi.org/10.3390/polym14214766
Li Z, Lin Q, Li Y, Lyu H, Wang H, Sun J. Effect of the Current on the Fire Characteristics of Overloaded Polyvinyl Chloride Copper Wires. Polymers. 2022; 14(21):4766. https://doi.org/10.3390/polym14214766
Chicago/Turabian StyleLi, Zhe, Qingwen Lin, Yang Li, Huifei Lyu, Huaibin Wang, and Junli Sun. 2022. "Effect of the Current on the Fire Characteristics of Overloaded Polyvinyl Chloride Copper Wires" Polymers 14, no. 21: 4766. https://doi.org/10.3390/polym14214766
APA StyleLi, Z., Lin, Q., Li, Y., Lyu, H., Wang, H., & Sun, J. (2022). Effect of the Current on the Fire Characteristics of Overloaded Polyvinyl Chloride Copper Wires. Polymers, 14(21), 4766. https://doi.org/10.3390/polym14214766