Temperature Effects on Effluent Microgel Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effluent Water Sampling and Water Parameter Analysis
2.2. dEfOM Sample Pretreatment and Temperature Adjustments
2.3. Microgel Size and Granularity Measurements
2.4. Confocal Microscopy
3. Results and Discussion
3.1. Self-Assembly Kinetics and Equilibrium Size
3.2. Granularity
3.3. Possible Mechanisms
3.4. Environmental Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael-Kordatou, I.; Michael, C.; Duan, X.; He, X.; Dionysiou, D.; Mills, M.; Fatta-Kassinos, D. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 2015, 77, 213–248. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Lee, C.-L. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system. J. Hazard. Mater. 2017, 328, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xenopoulos, M.A.; Barnes, R.T.; Boodoo, K.S.; Butman, D.; Catalán, N.; D’Amario, S.C.; Fasching, C.; Kothawala, D.N.; Pisani, O.; Solomon, C.T.; et al. How humans alter dissolved organic matter composition in freshwater: Relevance for the Earth’s biogeochemistry. Biogeochemistry 2021, 154, 323–348. [Google Scholar] [CrossRef]
- Santschi, P.; Chin, W.-C.; Quigg, A.; Xu, C.; Kamalanathan, M.; Lin, P.; Shiu, R.-F. Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels 2021, 7, 83. [Google Scholar] [CrossRef]
- Verdugo, P. Marine microgels. Annu. Rev. Mar. Sci. 2012, 4, 375–400. [Google Scholar] [CrossRef]
- He, W.; Chen, M.; Schlautman, M.A.; Hur, J. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review. Sci. Total Environ. 2016, 551–552, 415–428. [Google Scholar] [CrossRef]
- Bundy, R.M.; Barbeau, K.A.; Buck, K.N. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters. Deep Sea Res. Part II Top. Stud. Oceanogr 2013, 90, 134–146. [Google Scholar] [CrossRef]
- Wei-Haas, M.L.; Hageman, K.J.; Chin, Y.-P. Partitioning of Polybrominated Diphenyl Ethers to Dissolved Organic Matter Isolated from Arctic Surface Waters. Environ. Sci. Technol. 2014, 48, 4852–4859. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Bouchet, S.; Björn, E.; Haglund, P. Fractionation and size-distribution of metal and metalloid contaminants in a polluted groundwater rich in dissolved organic matter. J. Hazard. Mater. 2016, 318, 194–202. [Google Scholar] [CrossRef]
- Williams, C.J.; Frost, P.C.; Morales-Williams, A.M.; Larson, J.H.; Richardson, W.B.; Chiandet, A.S.; Xenopoulos, M.A. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, Z.; Wang, Z.; Wen, Q. Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation. Chemosphere 2019, 217, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, M.I.; Fatta-Kassinos, D. Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environ. Sci. Pollut. Res. 2013, 20, 3516–3528. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.X.; Brito, R.; Pereira, A.C.; Monteiro, K.B.E.S.; Gonçalves, B.B.; Rocha, T.L. Ecotoxicological assessment of effluents from Brazilian wastewater treatment plants using zebrafish embryotoxicity test: A multi-biomarker approach. Sci. Total Environ. 2020, 735, 139036. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.-C.; Orellana, M.V.; Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998, 391, 568–572. [Google Scholar] [CrossRef]
- Quigg, A.; Chin, W.-C.; Chen, C.-S.; Zhang, S.; Jiang, Y.; Miao, A.-J.; Schwehr, K.A.; Xu, C.; Santschi, P.H. Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter. ACS Sustain. Chem. Eng. 2013, 1, 686–702. [Google Scholar] [CrossRef]
- Quigg, A.; Passow, U.; Chin, W.; Xu, C.; Doyle, S.; Bretherton, L.; Kamalanathan, M.; Williams, A.K.; Sylvan, J.B.; Finkel, Z.V.; et al. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 2016, 1, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Burd, A.B.; Jackson, G.A. Particle aggregation. Annu. Rev. Mar. Sci. 2009, 1, 65–90. [Google Scholar] [CrossRef]
- De La Rocha, C.L.; Passow, U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-S.; Le, C.; Chiu, M.-H.; Chin, W.-C. The impact of nanoplastics on marine dissolved organic matter assembly. Sci. Total Environ. 2018, 634, 316–320. [Google Scholar] [CrossRef]
- Shiu, R.-F.; Chen, L.-Y.; Lee, H.-J.; Gong, G.-C.; Lee, C. New insights into the role of marine plastic-gels in microplastic transfer from water to the atmosphere via bubble bursting. Water Res. 2022, 222, 118856. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Vazquez, C.I.; Tsai, Y.-Y.; Torres, G.V.; Chen, C.-S.; Santschi, P.; Quigg, A.; Chin, W.-C. Nano-plastics induce aquatic particulate organic matter (microgels) formation. Sci. Total Environ. 2020, 706, 135681. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Vazquez, C.I.; Chiang, C.-Y.; Chiu, M.-H.; Chen, C.-S.; Ni, C.-W.; Gong, G.-C.; Quigg, A.; Santschi, P.H.; Chin, W.-C. Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Sci. Total Environ. 2020, 748, 141469. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-X.; Chin, W.-C.; Rodriguez, A.; Hung, C.-C.; Santschi, P.H.; Verdugo, P. Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Mar. Chem. 2008, 112, 11–19. [Google Scholar] [CrossRef]
- Chen, C.-S.; Anaya, J.-M.; Zhang, S.; Spurgin, J.; Chuang, C.-Y.; Xu, C.; Miao, A.-J.; Chen, E.Y.-T.; Schwehr, K.A.; Jiang, Y.; et al. Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton. PLoS ONE 2011, 6, e21865. [Google Scholar] [CrossRef] [Green Version]
- Shiu, R.-F.; Chin, W.-C.; Lee, C.-L. Carbonaceous particles reduce marine microgel formation. Sci. Rep. 2014, 4, srep05856. [Google Scholar] [CrossRef] [Green Version]
- Shiu, R.-F.; Lee, C.-L.; Chin, W.-C. Reduction in the exchange of coastal dissolved organic matter and microgels by inputs of extra riverine organic matter. Water Res. 2018, 131, 161–166. [Google Scholar] [CrossRef]
- Shiu, R.-F.; Lee, C.-L. Effects of anthropogenic surfactants on the conversion of ma- rine dissolved organic carbon and microgels. Mar. Pollut. Bull. 2017, 117, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Kerner, M.; Hohenberg, H.; Ertl, S.; Reckermann, M.; Spitzy, A. Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature 2003, 422, 150–154. [Google Scholar] [CrossRef]
- Pace, M.L.; Reche, I.; Cole, J.J.; Fernández-Barbero, A.; Mazuecos, I.P.; Prairie, Y. pH change induces shifts in the size and light absorption of dissolved organic matter. Biodegradation 2012, 108, 109–118. [Google Scholar] [CrossRef]
- Chen, C.-S.; Anaya, J.M.; Chen, E.Y.-T.; Farr, E.; Chin, W.-C. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly. PLoS ONE 2015, 10, e0118300. [Google Scholar] [CrossRef]
- Yue, W.-Z.; Sun, C.-C.; Shi, P.; Engel, A.; Wang, Y.-S.; He, W.-H. Effect of temperature on the accumulation of marine biogenic gels in the surface microlayer near the outlet of nuclear power plants and adjacent areas in the Daya Bay, China. PLoS ONE 2018, 13, e0198735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidacher, D.; Vailaya, A.; Horváth, C. Temperature effects in hydrophobic interaction chromatography. Proc. Natl. Acad. Sci. USA 1996, 93, 2290–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, Y.K.; Tajoddin, N.N.; Scrosati, P.M.; Konermann, L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J. Phys. Chem. B 2021, 125, 13099–13110. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, J.H.; Lee, J.B.; Lee, J.H. Highly scattering hierarchical porous polymer microspheres with a high-refractive index inorganic surface for a soft-focus effect. Polymers 2020, 12, 2418. [Google Scholar] [CrossRef]
- Taylor, M.; Tomlins, P.; Sahota, T. Thermoresponsive gels. Gels 2017, 3, 4. [Google Scholar] [CrossRef]
- Leck, C.; Bigg, E.K. New Particle Formation of Marine Biological Origin. Aerosol Sci. Technol. 2010, 44, 570–577. [Google Scholar] [CrossRef]
- Verdugo, P. Marine Biopolymer Dynamics, Gel Formation, and Carbon Cycling in the Ocean. Gels 2021, 7, 136. [Google Scholar] [CrossRef]
- Quigg, A.; Santschi, P.; Burd, A.; Chin, W.-C.; Kamalanathan, M.; Xu, C.; Ziervogel, K. From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts Involved with Particle Flux in the Ocean. Gels 2021, 7, 114. [Google Scholar] [CrossRef]
- Orellana, M.V.; Matrai, P.A.; Leck, C.; Rauschenberg, C.D.; Lee, A.M.; Coz, E. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. USA 2011, 108, 13612–13617. [Google Scholar] [CrossRef]
- Mari, X.; Passow, U.; Migon, C.; Burd, A.B.; Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 2017, 151, 13–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-M.; Vazquez, C.I.; Shiu, R.-F.; Chin, W.-C. Temperature Effects on Effluent Microgel Formation. Polymers 2022, 14, 4870. https://doi.org/10.3390/polym14224870
Chang H-M, Vazquez CI, Shiu R-F, Chin W-C. Temperature Effects on Effluent Microgel Formation. Polymers. 2022; 14(22):4870. https://doi.org/10.3390/polym14224870
Chicago/Turabian StyleChang, Hsiao-Ming, Carlos I. Vazquez, Ruei-Feng Shiu, and Wei-Chun Chin. 2022. "Temperature Effects on Effluent Microgel Formation" Polymers 14, no. 22: 4870. https://doi.org/10.3390/polym14224870
APA StyleChang, H. -M., Vazquez, C. I., Shiu, R. -F., & Chin, W. -C. (2022). Temperature Effects on Effluent Microgel Formation. Polymers, 14(22), 4870. https://doi.org/10.3390/polym14224870