One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Material Synthesis
2.2.1. Synthesis of Poly(limonene-phthalate)-block-poly(hexadecenlactone)
2.2.2. Synthesis of Poly(limonene-phthalate)-block-poly(pentadecalactone)
3. Results and Discussion
3.1. Synthesis of di-Block Polyesters
3.2. X-ray Diffraction Analysis of Copolymers
3.3. Thermal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pappalardo, D.; Mathisen, T.; Finne-Wistrand, A. Biocompatibility of Resorbable Polymers: A Historical Perspective and Framework for the Future. Biomacromolecules 2019, 20, 1465–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertsson, A.-C.; Varma, I.K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4, 1466–1486. [Google Scholar] [CrossRef] [PubMed]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Hakkarainen, M. Designed to Degrade. Science 2017, 358, 872–873. [Google Scholar] [CrossRef] [PubMed]
- Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem. Rev. 2004, 104, 6147–6176. [Google Scholar] [CrossRef]
- Zhang, X.; Fevre, M.; Jones, G.O.; Waymouth, R.M. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. 2018, 118, 839. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Fuoco, T.; Pappalardo, D. Aluminum Alkyl Complexes Bearing Salicylaldiminato Ligands: Versatile Initiators in the Ring-Opening Polymerization of Cyclic Esters. Catalysts 2017, 7, 64. [Google Scholar] [CrossRef]
- Strianese, M.; Pappalardo, D.; Mazzeo, M.; Lamberti, M.; Pellecchia, C. Salen-Type Aluminum and Zinc Complexes as Two-Faced Janus Compounds: Contribution to Molecular Sensing and Polymerization Catalysis. Dalt. Trans. 2020. [Google Scholar] [CrossRef]
- Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P.K.; Williams, C.K. Ring-Opening Copolymerization (ROCOP): Synthesis and Properties of Polyesters and Polycarbonates. Chem. Commun. 2015, 51, 6459–6479. [Google Scholar] [CrossRef] [Green Version]
- Walsh, D.J.; Hyatt, M.G.; Miller, S.A.; Guironnet, D. Recent Trends in Catalytic Polymerizations. ACS Catal. 2019, 9, 11153–11188. [Google Scholar] [CrossRef]
- Pappalardo, D.; Annunziata, L.; Pellecchia, C. Living Ring-Opening Homo- and Copolymerization of ε-Caprolactone and L- and D, L-Lactides by Dimethyl(Salicylaldiminato)Aluminum Compounds. Macromolecules 2009, 42, 6056–6062. [Google Scholar] [CrossRef]
- Romain, D.C.; Williams, C.K. Chemoselective Polymerization Control: From Mixed-Monomer Feedstock to Copolymers. Angew. Chem. Int. Ed. 2014, 53, 1607–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Hu, C.; Zhang, T.; Xu, X.; Duan, R.; Luo, Y.; Sun, Z.; Pang, X.; Chen, X. One-Pot Synthesis of Diblock Polyesters by Catalytic Terpolymerization of Lactide, Epoxides, and Anhydrides. Macromolecules 2019, 52, 3462–3470. [Google Scholar] [CrossRef]
- Isnard, F.; Santulli, F.; Cozzolino, M.; Lamberti, M.; Pellecchia, C.; Mazzeo, M. Tetracoordinate Aluminum Complexes Bearing Phenoxy-Based Ligands as Catalysts for Epoxide/Anhydride Copolymerization: Some Mechanistic Insights. Catal. Sci. Technol. 2019, 9, 3090. [Google Scholar] [CrossRef]
- Kremer, A.B.; Mehrkhodavandi, P. Dinuclear Catalysts for the Ring Opening Polymerization of Lactide. Coord. Chem. Rev. 2019, 380, 35. [Google Scholar] [CrossRef]
- Isnard, F.; Carratu, M.; Lamberti, M.; Venditto, V.; Mazzeo, M. Copolymerization of Cyclic Esters, Epoxides and Anhydrides: Evidence of the Dual Role of the Monomers in the Reaction Mixture. Catal. Sci. Technol. 2018, 8, 5034. [Google Scholar] [CrossRef]
- D’Auria, I.; Santulli, F.; Ciccone, F.; Giannattasio, A.; Mazzeo, M.; Pappalardo, D. Synthesis of Semi-Aromatic Di-Block Polyesters by Terpolymerization of Macrolactones, Epoxides, and Anhydrides. ChemCatChem 2021, 13, 3303–3311. [Google Scholar] [CrossRef]
- Pepels, M.P.F.; Koeken, R.A.C.; van der Linden, S.J.J.; Heise, A.; Duchateau, R. Mimicking (Linear) Low-Density Polyethylenes Using Modified Polymacrolactones. Macromolecules 2015, 48, 4779–4792. [Google Scholar] [CrossRef]
- Fuoco, T.; Meduri, A.; Lamberti, M.; Venditto, V.; Pellecchia, C.; Pappalardo, D. Ring-Opening Polymerization of [Small Omega]-6-Hexadecenlactone by a Salicylaldiminato Aluminum Complex: A Route to Semicrystalline and Functional Poly(Ester)S. Polym. Chem. 2015, 6, 1727–1740. [Google Scholar] [CrossRef]
- Naddeo, M.; Vigliotta, G.; Pellecchia, C.; Pappalardo, D. Synthesis of Bio-Based Polymacrolactones with Pendant Eugenol Moieties as Novel Antimicrobial Thermoplastic Materials. React. Funct. Polym. 2020, 155, 104714. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.M.; Allen, S.D.; Lobkovsky, E.B.; Coates, G.W. Alternating Copolymerization of Limonene Oxide and Carbon Dioxide. J. Am. Chem. Soc. 2004, 126, 11404–11405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauenstein, O.; Agarwal, S.; Greiner, A. Bio-Based Polycarbonate as Synthetic Toolbox. Nat. Commun. 2016, 7, 11862. [Google Scholar] [CrossRef] [PubMed]
- Carrodeguas, L.P.; Chen, T.T.D.; Gregory, G.L.; Sulley, G.S.; Williams, C.K. High Elasticity, Chemically Recyclable, Thermoplastics from Bio-Based Monomers: Carbon Dioxide, Limonene Oxide and ϵ-Decalactone. Green Chem. 2020, 22, 8298–8307. [Google Scholar] [CrossRef]
- Neumann, S.; Däbritz, S.B.; Fritze, S.E.; Leitner, L.C.; Anand, A.; Greiner, A.; Agarwal, S. Sustainable Block Copolymers of Poly(Limonene Carbonate). Polym. Chem. 2021, 12, 903–910. [Google Scholar] [CrossRef]
- Santulli, F.; D’auria, I.; Boggioni, L.; Losio, S.; Proverbio, M.; Costabile, C.; Mazzeo, M. Bimetallic Aluminum Complexes Bearing Binaphthyl-Based Iminophenolate Ligands as Catalysts for the Synthesis of Polyesters. Organometallics 2020, 39, 1213–1220. [Google Scholar] [CrossRef]
- Isnard, F.; Lamberti, M.; Lettieri, L.; D’Auria, I.; Press, K.; Troiano, R.; Mazzeo, M. Bimetallic Salen Aluminum Complexes: Cooperation between Reactive Centers in the Ring-Opening Polymerization of Lactides and Epoxides. Dalt. Trans. 2016, 45, 16001. [Google Scholar] [CrossRef]
- Miao, M.S.; Zhang, M.L.; Van Doren, V.E.; Van Alsenoy, C.; Martins, J.L. Density Functional Calculations on the Structure of Crystalline Polyethylene under High Pressures. J. Chem. Phys. 2001, 115, 11317. [Google Scholar] [CrossRef] [Green Version]
- Ceccorulli, G.; Scandola, M.; Kumar, A.; Kalra, B.; Gross, R.A. Cocrystallization of Random Copolymers of ω-Pentadecalactone and ε-Caprolactone Synthesized by Lipase Catalysis. Biomacromolecules 2005, 6, 902–907. [Google Scholar] [CrossRef]
- Vittoria, V. Influence of the Crystallinity on the Transport Properties of Polyethylene. J. Mater. Sci. 1995, 30, 3954–3958. [Google Scholar] [CrossRef]
- Sorrentino, A.; Gorrasi, G.; Bugatti, V.; Fuoco, T.; Pappalardo, D. Polyethylene-like Macrolactone-Based Polyesters: Rheological, Thermal and Barrier Properties. Mater. Today Commun. 2018, 17, 380–390. [Google Scholar] [CrossRef]
- Unger, M.; Vogel, C.; Siesler, H.W. Molecular Weight Dependence of the Thermal Degradation of Poly(epsilon-Caprolactone): A Thermogravimetric Differential Thermal Fourier Transform Infrared Spectroscopy Study. Appl. Spectrosc. 2010, 64, 805–809. [Google Scholar] [CrossRef] [PubMed]
Run | PDL d (eq) | HDL d (eq) | LO d (eq) | PA d (eq) | t (days) | b Conv (%) | c MnGPC (KDa) | cÐ |
---|---|---|---|---|---|---|---|---|
1 | - | 100 | 100 | 80 | 2 | HDL = 54 | 4.7 | 1.80 |
2 | - | 100 | 100 | 80 | 4 | HDL = 95 | 5.4 | 2.18 |
3 | 100 | - | 100 | 80 | 2 | PDL = 45 | 6.5 | 1.32 |
4 | 100 | - | 100 | 80 | 5 | PDL > 99 | 4.8 | 1.23 |
5 | 200 | - | 200 | 150 | 3 | PDL = 42 | 5.1 | 1.47 |
Sample | Tm (°C) |
---|---|
1 | 65 |
2 | 63 |
3 | 82 |
4 | 85 |
5 | 84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, I.; D’Aniello, S.; Viscusi, G.; Lamberti, E.; Gorrasi, G.; Mazzeo, M.; Pappalardo, D. One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters. Polymers 2022, 14, 4911. https://doi.org/10.3390/polym14224911
D’Auria I, D’Aniello S, Viscusi G, Lamberti E, Gorrasi G, Mazzeo M, Pappalardo D. One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters. Polymers. 2022; 14(22):4911. https://doi.org/10.3390/polym14224911
Chicago/Turabian StyleD’Auria, Ilaria, Sara D’Aniello, Gianluca Viscusi, Elena Lamberti, Giuliana Gorrasi, Mina Mazzeo, and Daniela Pappalardo. 2022. "One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters" Polymers 14, no. 22: 4911. https://doi.org/10.3390/polym14224911
APA StyleD’Auria, I., D’Aniello, S., Viscusi, G., Lamberti, E., Gorrasi, G., Mazzeo, M., & Pappalardo, D. (2022). One-Pot Terpolymerization of Macrolactones with Limonene Oxide and Phtalic Anhydride to Produce di-Block Semi-Aromatic Polyesters. Polymers, 14(22), 4911. https://doi.org/10.3390/polym14224911