A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer
Abstract
1. Introduction
2. Sensor Fabrication and Principle
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jose, F.M.D.; Andrade, A.A.; Pilla, V.; Zilio, S.C. Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer. Opt. Express 2017, 25, 313–319. [Google Scholar] [CrossRef]
- Hossain, M.; Chan, H.; Uddin, M. Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique. Appl. Optics 2010, 49, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Van Aken, J.A.; Janeschitz-Kriegl, H. Simultaneous measurement of transient stress and flow birefringence in one-sided compression (biaxial extension) of a polymer melt. Rheol. Acta 1981, 20, 419–432. [Google Scholar] [CrossRef]
- Shimamura, A.; Priimagi, A.; Mamiya, J.I.; Ikeda, T.; Yu, Y.; Barrett, C.J.; Shishido, A. Simultaneous Analysis of Optical and Mechanical Properties of Cross-Linked Azobenzene-Containing Liquid-Crystalline Polymer Films. ACS Appl. Mater. Interfaces 2011, 3, 4190–4196. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Buontempo, S.; Petriccione, A.; Zarrelli, M.; Breglio, G.; Saccomanno, A.; Szillasi, Z.; Makovec, A.; Cusano, A.; Chiuchiolo, A.; et al. Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures. Sens. Actuators A Phys. 2013, 189, 195–203. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Liang, J.; Zhang, Y.; Oigawa, H.; Ueda, T. Fiber-optic temperature sensor based on difference of thermal expansion coefficient between fused silica and metallic materials. IEEE Photonics J. 2012, 4, 155–162. [Google Scholar] [CrossRef]
- Lee, C.L.; Ho, H.Y.; Gu, J.H.; Yeh, T.Y.; Tseng, C.H. Dual hollow core fiber-based Fabry–Perot interferometer for measuring the thermo-optic coefficients of liquids. Opt. Lett. 2015, 40, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Lu, Y.; Cheng, C.H.; Ma, C.T. Microhole-pair hollow core fiber Fabry-Perot interferometer micromachining by a femtosecond laser. Sens. Actuators A Phys. 2020, 302, 111798. [Google Scholar] [CrossRef]
- Kamikawachi, R.C.; Abe, I.; Paterno, A.S.; Kalinowski, H.J.; Muller, M.; Pinto, J.L.; Fabris, J.L. Determination of Thermo-Optic Coefficient in Liquids with Fiber Bragg Grating Refractometer. Opt. Commun. 2008, 281, 621–625. [Google Scholar] [CrossRef]
- Yao, Q.; Meng, H.; Wang, W.; Xue, H.; Xiong, R.; Huang, B.; Tan, C.; Huang, X. Simultaneous Measurement of Refractive Index and Temperature Based on a Core-Offset Mach–Zehnder Interferometer Combined with a Fiber Bragg Grating. Sens. Actuators A Phys. 2014, 209, 73–77. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, S.J.; Jeon, S.W.; Ju, S.; Park, C.S.; Han, W.T.; Lee, B.H. Thermo-Optic Coefficient Measurement of Liquids Based on Simultaneous Temperature and Refractive Index Sensing Capability of a Two-Mode Fiber Interferometric Probe. Opt. Express 2012, 20, 23744–23754. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; You, Y.W.; Dai, J.H.; Hsu, J.M.; Horng, J.S. Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature. Sens. Actuators B Chem. 2016, 222, 339–346. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Wang, B.; Chen, L.; Bai, Z.; Gao, S.; Li, J.; Liu, Y.; Zhang, L.; Zhou, Q.; et al. Simultaneous Strain and Temperature Measurement by Cascading Few-Mode Fiber and Single-Mode Fiber Long-Period Fiber Gratings. Appl. Opt. 2014, 53, 7045. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.J.J.; Lim, J.L.; Jiang, M.; Wang, Y.; Luan, F.; Shum, P.P.; Wei, H.; Tong, W. Long Period Grating Cascaded to Photonic Crystal Fiber Modal Interferometer for Simultaneous Measurement of Temperature and Refractive Index. Opt. Lett. 2012, 37, 2283. [Google Scholar] [CrossRef]
- Ma, C.T.; Chang, Y.W.; Yang, Y.J.; Lee, C.L. A Dual-Polymer Fiber Fizeau Interferometer for Simultaneous Measurement of Relative Humidity and Temperature. Sensors 2017, 17, 2659. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Qin, B.; Zhu, Z.; Zhang, Y.; Liu, Z.; Yang, J.; Yuan, L. Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature. Opt. Lett. 2014, 39, 5267. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Cao, Z.; Gao, H.; Hao, M.; Qiao, X. Large measurement-range and low temperature cross-sensitivity optical fiber curvature sensor based on Michelson interferometer. Opt. Fiber Technol. 2022, 72, 102990. [Google Scholar] [CrossRef]
- He, C.; Korposh, S.; Correia, R.; Liu, L.; Hayes-Gill, B.R.; Morgan, S.P. Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation. Sens. Actuators B Chem. 2021, 344, 130154. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y.; Qu, J.; Liao, C.; Yin, G.; He, J.; Zhou, J.; Tang, J.; Liu, S.; Li, Z.; et al. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer drople. Opt. Express 2015, 23, 1906–1911. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.sciencedirect.com/topics/engineering/linear-coefficient-of-expansion (accessed on 22 October 2022).
- Available online: https://www.norlandprod.com/adhesiveindex2.html (accessed on 10 October 2022).
Polymers | NOA 61 (At 1550 nm) | NOA65 (At 1550 nm) | NOA146H (At 1550 nm) |
---|---|---|---|
TOC: (°C−1) | −1.86 × 10−4 | −1.9 × 10−4 | −3.59 × 10−4 |
TEC: (°C−1) | +8.3 × 10−4 (volume) | +11.9 × 10−4 (volume) | +10.78 × 10−4 (volume) |
(measured in the study) | |||
TOC: (°C−1) | −1.8 × 10−4 | −1.83 × 10−4 | |
TEC: (°C−1) | +2.4 × 10−4 (linear) | +2.5 × 10−4 (linear) | |
(reference data) | [21] | [19] | |
TOCd: (°C−1) | 6 × 10−6 | 7 × 10−6 | |
TECd, linear: (°C−1) | 3.67 × 10−5 | 1.46 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-L.; Ma, C.-T.; Yeh, K.-C.; Chen, Y.-M. A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Polymers 2022, 14, 4966. https://doi.org/10.3390/polym14224966
Lee C-L, Ma C-T, Yeh K-C, Chen Y-M. A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Polymers. 2022; 14(22):4966. https://doi.org/10.3390/polym14224966
Chicago/Turabian StyleLee, Cheng-Ling, Chao-Tsung Ma, Kuei-Chun Yeh, and Yu-Ming Chen. 2022. "A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer" Polymers 14, no. 22: 4966. https://doi.org/10.3390/polym14224966
APA StyleLee, C.-L., Ma, C.-T., Yeh, K.-C., & Chen, Y.-M. (2022). A Dual-Cavity Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Thermo-Optic and Thermal Expansion Coefficients of a Polymer. Polymers, 14(22), 4966. https://doi.org/10.3390/polym14224966