Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments and Methods
2.3. Process for the Preparation of the PPy/FeCN/Lacc/SPCE Enzyme Sensor
2.3.1. Preparation of the Monomer/Doping Agent Solution (PPy/FeCN)
2.3.2. Manufacture of the PPy/FeCN/Lacc/SPCE Biosensor
2.4. Analysis of Real Samples
3. Results
3.1. Cyclic Voltammetry Characterization
3.1.1. Stable Electrochemical Responses of Biosensors in 0.1 M KCl Solutions and in a Double Solution of 0.1 M KCl-10−3 M L-Tyr
3.1.2. Effect of the Scan Rate on PPy/FeCN/Lacc/SPCE Immersed in Double Solution 0.1 M KCl and 0.1 M KCl-10−3 M L-Tyr
3.1.3. Calibration Curve and Detection Limit of the PPy/FeCN/Lacc/SPCE Biosensor
3.1.4. Quantitative Determination of L-Tyr at PPy/FeCN/Lacc/SPCE in Pharmaceutical Samples by the CV Method and Standard FT-IR Method for Biosensor Validation
3.2. Repeatability, Reproducibility, Stability, and Interference Study of the Biosensor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoikov, D.; Ivanov, A.; Shurpik, D.; Stoikov, I.; Evtugyn, G. Flow-Through Electrochemical Biosensor with a Replaceable Enzyme Reactor and Screen-Printed Electrode for the Determination of Uric Acid and Tyrosine. Anal. Lett. 2021, 1–15. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. Development of a Novel Sensor Based on Polypyrrole Doped with Potassium Hexacyanoferrate (II) for Detection of L-Tryptophan in Pharmaceutics. Inventions 2021, 6, 56. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, C.; Karthikeyan, M.; Kumar, M.D.; Kaniraja, G.; Bhargava, K. Electrochemical Biosensors for Point of Care Applications. Def. Sci. J. 2020, 70, 549–556. [Google Scholar] [CrossRef]
- Han, A. Effects of Mindfulness-Based Interventions on Depressive Symptoms, Anxiety, Stress, and Quality of Life in Family Caregivers of Persons Living with Dementia: A Systematic Review and Meta-Analysis. Res. Aging 2021, 016402752110434. [Google Scholar] [CrossRef] [PubMed]
- Marr, C.; Sauerland, M.; Otgaar, H.; Quaedflieg, C.W.E.M.; Hope, L. The Effects of Acute Stress on Eyewitness Memory: An Integrative Review for Eyewitness Researchers. Memory 2021, 29, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Dinu, A.; Apetrei, C. A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. Sensors 2020, 20, 2496. [Google Scholar] [CrossRef]
- Seim, K.L.; Obermeyer, A.C.; Francis, M.B. Oxidative Modification of Native Protein Residues Using Cerium(IV) Ammonium Nitrate. J. Am. Chem. Soc. 2011, 133, 16970–16976. [Google Scholar] [CrossRef] [Green Version]
- Teke Kisa, P.; Eroglu Erkmen, S.; Bahceci, H.; Arslan Gulten, Z.; Aydogan, A.; Karalar Pekuz, O.K.; Yuce Inel, T.; Ozturk, T.; Uysal, S.; Arslan, N. Efficacy of Phenylalanine- and Tyrosine-Restricted Diet in Alkaptonuria Patients on Nitisinone Treatment: Case Series and Review of Literature. Ann. Nutr. Metab. 2021, 1–13. [Google Scholar] [CrossRef]
- Negut, C.C.; Stefan-van Staden, R.-I. Review—Recent Trends in Supramolecular Recognition of Dopamine, Tyrosine, and Tryptophan, Using Electrochemical Sensors. J. Electrochem. Soc. 2021, 168, 067517. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional Significance of Amino Acids, Vitamins and Minerals as Nutraceuticals in Poultry Production and Health—A Comprehensive Review. Vet. Q. 2021, 41, 1–29. [Google Scholar] [CrossRef]
- Zil’berg, R.A.; Maistrenko, V.N.; Kabirova, L.R.; Gus’kov, V.Y.; Khamitov, E.M.; Dubrovskii, D.I. A Chiral Voltammetric Sensor Based on a Paste Electrode Modified by Cyanuric Acid for the Recognition and Determination of Tyrosine Enantiomers. J. Anal. Chem. 2020, 75, 101–110. [Google Scholar] [CrossRef]
- Pietz, J.; Landwehr, R.; Kutscha, A.; Schmidt, H.; de Sonneville, L.; Trefz, F.K. Effect of High-Dose Tyrosine Supplementation on Brain Function in Adults with Phenylketonuria. J. Pediatr. 1995, 127, 936–943. [Google Scholar] [CrossRef]
- Gelenberg, A.J.; Wojcik, J.D.; Growdon, J.; Sved, A.; Wurtman, R. Tyrosine for the Treatment of Depression. Am. J. Psychiatry 1980, 137, 622–623. [Google Scholar] [CrossRef]
- Feng, C.-W.; Chen, N.-F.; Chan, T.-F.; Chen, W.-F. Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson’s Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. Parkinson’s Dis. 2020, 2020, 8814236. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.; Sherwin, J.; Wong, R.; Liao, C.; Currier, R.; Lorey, F.; Cunningham, G. Use of the Phenylalanine: Tyrosine Ratio to Test Newborns for Phenylketonuria in a Large Public Health Screening Programme. J. Med. Screen. 2000, 7, 131–135. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors 2020, 8, 113. [Google Scholar] [CrossRef]
- Bilandžija, H.; Ma, L.; Parkhurst, A.; Jeffery, W.R. A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the Oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis. PLoS ONE 2013, 8, e80823. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.H.; Wilson, P.J.M.; Sutherland, H.; Judd, S.; Hughes, A.T.; Milan, A.M.; Jarvis, J.C.; Bou-Gharios, G.; Ranganath, L.R.; Gallagher, J.A. Dietary Restriction of Tyrosine and Phenylalanine Lowers Tyrosinemia Associated with Nitisinone Therapy of Alkaptonuria. J. Inherit. Metab. Dis. 2020, 43, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Dinu, A.; Apetrei, C. Development of Polypyrrole Modified Screen-Printed Carbon Electrode Based Sensors for Determination of L-Tyrosine in Pharmaceutical Products. IJMS 2021, 22, 7528. [Google Scholar] [CrossRef] [PubMed]
- Jalil Abosadeh, D.; Kashanian, S.; Nazari, M.; Parnianchi, F. Fabrication of a Novel Phenolic Compound Biosensor Using Laccase Enzyme and Metal-Organic Coordination Polymers. Anal. Bioanal. Chem. Res. 2021, 8, 467–480. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Kermasha, S.; Karboune, S. Laccase-Catalyzed Oxidative Cross-Linking of Tyrosine and Potato Patatin- and Lysozyme-Derived Peptides: Molecular and Kinetic Study. Enzym. Microb. Technol. 2021, 143, 109694. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xing, M.; Wang, H.; Zhang, L.; Zhong, Y.; Chen, L. Determination of Tryptophan and Tyrosine by Chemiluminescence Based on a Luminol–N-Bromosuccinimide–ZnS Quantum Dots System. RSC Adv. 2015, 5, 59286–59291. [Google Scholar] [CrossRef]
- Deng, C.; Deng, Y.; Wang, B.; Yang, X. Gas Chromatography–Mass Spectrometry Method for Determination of Phenylalanine and Tyrosine in Neonatal Blood Spots. J. Chromatogr. B 2002, 780, 407–413. [Google Scholar] [CrossRef]
- Rigobello-Masini, M.; Masini, J.C. Sequential Injection Chromatography for Fluorimetric Determination of Intracellular Amino Acids in Marine Microalgae. In Amino Acid Analysis; Springer: Berlin/Heidelberg, Germany, 2012; pp. 305–315. [Google Scholar]
- Peat, J.; Garg, U. Determination of Phenylalanine and Tyrosine by High Performance Liquid Chromatography-Tandem Mass Spectrometry. In Clinical Applications of Mass Spectrometry in Biomolecular Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 219–225. [Google Scholar]
- Mo, X.; Li, Y.; Tang, A.; Ren, Y. Simultaneous Determination of Phenylalanine and Tyrosine in Peripheral Capillary Blood by HPLC with Ultraviolet Detection. Clin. Biochem. 2013, 46, 1074–1078. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.Q. Electrochemical Determination of Tyrosine and Nitrite Using CS/CMWNTs/GCE-Modified Electrode. Int. J. Electrochem. Sci. 2018, 13, 3527–3534. [Google Scholar] [CrossRef]
- D’Souza, E.S.; Manjunatha, J.G.; Chenthatti, R.; Tigari, G.; Ravishankar, D.K. Rapid Electrochemical Monitoring of Tyrosine by Poly (Riboflavin) Modified Carbon Nanotube Paste Electrode as a Sensitive Sensor and Its Applications in Pharmaceutical Samples. Biointerface Res. Appl. Chem. 2021, 11, 14661–14672. [Google Scholar] [CrossRef]
- Taei, M.; Ramazani, G. Simultaneous Determination of Norepinephrine, Acetaminophen and Tyrosine by Differential Pulse Voltammetry Using Au-Nanoparticles/Poly(2-Amino-2-Hydroxymethyl-Propane-1,3-Diol) Film Modified Glassy Carbon Electrode. Colloids Surf. B Biointerfaces 2014, 123, 23–32. [Google Scholar] [CrossRef]
- Kavitha, C.; Bramhaiah, K.; John, N.S. Low-Cost Electrochemical Detection of l-Tyrosine Using an RGO–Cu Modified Pencil Graphite Electrode and Its Surface Orientation on a Ag Electrode Using an Ex Situ Spectroelectrochemical Method. RSC Adv. 2020, 10, 22871–22880. [Google Scholar] [CrossRef]
- Kerman, K.; Kraatz, H.-B. Electrochemical Detection of Protein Tyrosine Kinase-Catalysed Phosphorylation Using Gold Nanoparticles. Biosens. Bioelectron. 2009, 24, 1484–1489. [Google Scholar] [CrossRef]
- Liu, M.; Lao, J.; Wang, H.; Xu, Z.; Li, J.; Wen, L.; Yin, Z.; Luo, C.; Peng, H. Electrochemical Determination of Tyrosine Using Graphene and Gold Nanoparticle Composite Modified Glassy Carbon Electrode. Russ. J. Electrochem. 2021, 57, 41–50. [Google Scholar] [CrossRef]
- Feng, J.; Deng, P.; Xiao, J.; Li, J.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; He, Q. New Voltammetric Method for Determination of Tyrosine in Foodstuffs Using an Oxygen-Functionalized Multi-Walled Carbon Nanotubes Modified Acetylene Black Paste Electrode. J. Food Compos. Anal. 2021, 96, 103708. [Google Scholar] [CrossRef]
- Alam, M.M.; Uddin, M.T.; Asiri, A.M.; Rahman, M.M.; Islam, M.A. Detection of L-Tyrosine by Electrochemical Method Based on Binary Mixed CdO/SnO2 Nanoparticles. Measurement 2020, 163, 107990. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, Q.; Li, F.; Zhang, B. Laccase Immobilization on Chitosan/Poly(Vinyl Alcohol) Composite Nanofibrous Membranes for 2,4-Dichlorophenol Removal. Chem. Eng. J. 2013, 222, 321–329. [Google Scholar] [CrossRef]
- Haghighi, M.; Shahlaei, M.; Irandoust, M.; Hassanpour, A. New and Sensitive Sensor for Voltammetry Determination of Methamphetamine in Biological Samples. J. Mater. Sci. Mater. Electron. 2020, 31, 10989–11000. [Google Scholar] [CrossRef]
- Abdi, Z.; Vandichel, M.; Sologubenko, A.S.; Willinger, M.-G.; Shen, J.-R.; Allakhverdiev, S.I.; Najafpour, M.M. The Importance of Identifying the True Catalyst When Using Randles-Sevcik Equation to Calculate Turnover Frequency. Int. J. Hydrog. Energy 2021, 46, 37774–37781. [Google Scholar] [CrossRef]
- Apetrei, C. Novel Method Based on Polypyrrole-modified Sensors and Emulsions for the Evaluation of Bitterness in Extra Virgin Olive Oils. Food Res. Int. 2012, 48, 673–680. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Yin, L.; Jiang, F. In Situ Encapsulation of Laccase in Nanofibers by Electrospinning for Development of Enzyme Biosensors for Chlorophenol Monitoring. Analyst 2011, 136, 4802. [Google Scholar] [CrossRef] [PubMed]
- Varmira, K.; Mohammadi, G.; Mahmoudi, M.; Khodarahmi, R.; Rashidi, K.; Hedayati, M.; Goicoechea, H.C.; Jalalvand, A.R. Fabrication of a Novel Enzymatic Electrochemical Biosensor for Determination of Tyrosine in Some Food Samples. Talanta 2018, 183, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Mohseni, M.; Raoof, J.B.; Ojani, R.; Aghajanzadeh, T.A.; Bagheri Hashkavayi, A. Development of a New Paper Based Nano-Biosensor Using the Co-Catalytic Effect of Tyrosinase from Banana Peel Tissue (Musa Cavendish) and Functionalized Silica Nanoparticles for Voltammetric Determination of l-Tyrosine. Int. J. Biol. Macromol. 2018, 113, 648–654. [Google Scholar] [CrossRef]
- Wei, J.; Qiu, J.; Li, L.; Ren, L.; Zhang, X.; Chaudhuri, J.; Wang, S. A Reduced Graphene Oxide Based Electrochemical Biosensor for Tyrosine Detection. Nanotechnology 2012, 23, 335707. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, F.H.; Taher, M.A. Enzymatic Sensing of Tyrosine in Egg and Cheese Samples Using Electrochemical Sensor Amplified with Reduced Graphene Oxide. Food Meas. 2021, 15, 5707–5712. [Google Scholar] [CrossRef]
- Phelane, L.; Gouveia-Caridade, C.; Barsan, M.M.; Baker, P.G.L.; Brett, C.M.A.; Iwuoha, E.I. Electrochemical Determination of Tyrosine Using a Novel Tyrosinase Multi-Walled Carbon Nanotube (MWCNT) Polysulfone Modified Glassy Carbon Electrode (GCE). Anal. Lett. 2020, 53, 308–321. [Google Scholar] [CrossRef]
- Battista, E.; Lettera, V.; Villani, M.; Calestani, D.; Gentile, F.; Netti, P.A.; Iannotta, S.; Zappettini, A.; Coppedè, N. Enzymatic Sensing with Laccase-Functionalized Textile Organic Biosensors. Org. Electron. 2017, 40, 51–57. [Google Scholar] [CrossRef]
Biosensor Electrolyte Solution | Redox System I | Redox System II | |||||||
---|---|---|---|---|---|---|---|---|---|
Epa 1 (V) | Ipa 2 (A) | Epc 3 (V) | Ipc 4 (A) | Epa (V) | Ipa (A) | Epc (V) | Ipc (A) | ||
PPy/FeCN/Lacc/SPCE | 0.1 M KCl | −0.23 | 1.6 × 10−4 | −0.73 | −2.05 × 10−4 | 0.29 | 1.5 × 10−4 | 0.04 | −1.23 × 10−4 |
0.1 M KCl–10−3 M L-Tyr | 1.7 × 10−4 | −2.06 × 10−4 | 1.6 × 10−4 | −1.24 × 10−4 |
Electrode | Electrochemical Parameters | ||||||
---|---|---|---|---|---|---|---|
Epa 1 (V) | Epc 2 (V) | ΔE 3 (V) | Ipa 4 (A) | Ipc 5 (A) | Ipc/Ipa | ||
PPy/FeCN/SPCE sensor [20] | Redox system I | −0.32 | −0.74 | 0.42 | 6 × 10−6 | −2 × 10−5 | 4.31 |
Redox system II | 0.20 | 0.03 | 0.17 | 7.2 × 10−6 | −4.9 × 10−6 | 0.69 | |
PPy/FeCN/Lacc/SPCE biosensor | Redox system I | −0.26 | −0.74 | 0.48 | 1.7 × 10−4 | −2 × 10−4 | 1.18 |
Redox system II | 0.26 | 0.03 | 0.23 | 1.5 × 10−4 | −1.2 × 10−4 | 0.78 |
Electrode | Electrochemical Parameters | ||||||
---|---|---|---|---|---|---|---|
Epa 1 (V) | Epc 2 (V) | ΔE 3 (V) | Ipa 4 (A) | Ipc 5 (A) | Ipc/Ipa | ||
PPy/FeCN/SPCE sensor [20] | Redox system I | −0.28 | −0.66 | −0.38 | 1.2 × 10−4 | −1.3 × 10−4 | 1.09 |
Redox system II | 0.19 | 0.08 | 0.11 | 9.4 × 10−5 | −8.5 × 10−5 | 0.90 | |
PPy/FeCN/Lacc/SPCE biosensor | Redox system I | −0.20 | −0.74 | 0.54 | 1.7 × 10−4 | −2 × 10−4 | 1.19 |
Redox system II | 0.26 | 0.04 | 0.22 | 1.5 × 10−4 | −1.1 × 10−4 | 0.75 |
Electrode | Solution | Slope | R2 | Active Area (cm2) | Geometric Area | Roughness Factor |
---|---|---|---|---|---|---|
PPy/FeCN/SPCE sensor [20] | 0.1 M KCl and 0.1 M KCl–10−3 M L-Tyr | −0.0009776 | 0.9943 | 1.3488 | 0.1256 | 10.74 |
PPy/FeCN/Lacc/SPCE biosensor | −0.0011566 | 0.9985 | 1.5957 | 12.70 |
Electrode | LOD 1 (M) | LOQ 2 (M) |
---|---|---|
PPy/FeCN/SPCE sensor [20] | 3.76 × 10−7 | 1.25 × 10−6 |
PPy/FeCN/Lacc/SPCE biosensor | 2.29 × 10−8 | 7.63 × 10−8 |
Pharmaceutical Product | Manufacturer | L-Tyr in the Pharmaceutical Product/mg per Capsule | L-Tyr Determined by CV/mg per Capsule | L-Tyr Determined by FT-IR/mg per Capsule |
---|---|---|---|---|
Cebrium | EVER Neuro Pharma | 4.012 | 4.124 | 4.131 |
Tiroidin | Parapharm | 90 | 92.34 | 92.98 |
L-Tyrosine | Solaray | 500 | 477.5 | 478.3 |
Sample | Added (μM) | Found (μM) | Recovery (%) |
---|---|---|---|
1 | 1.5 | 1.46 | 97.34 |
2 | 3.0 | 3.07 | 102.34 |
3 | 4.5 | 4.48 | 99.55 |
4 | 6.0 | 6.85 | 97.50 |
L-Tyr (10−5 M) + Interfering Species (10−5 M) | Observed Potential (V) | Potential Change (%) | Average Potential Change (%) | Observed Current (106 A) | Current Change (%) | Average Current Change (%) |
---|---|---|---|---|---|---|
L-Tyr | −0.7444 | − | 0.42 | −0.2144 | − | 1.64 |
L-Tyr + Phe | −0.7419 | 0.33 | −0.2119 | 1.66 | ||
L-Tyr + Trypt | −0.7403 | 0.55 | −0.2103 | 1.91 | ||
L-Tyr + Cysteine | −0.7415 | 0.38 | −0.2115 | 1.35 |
Nr. Crt. | Electrode Material | Enzyme | Real Samples | Detection Method | Linear Range (M) | LOD (M) | Ref. |
---|---|---|---|---|---|---|---|
1 | Tyrosine hydroxylase onto palladium–platinum bimetallic alloy nanoparticles/chitosan-1-ethyl-3-methylimidazoliurn bis(trifluoromethylsulfonyl) imide/graphene-multiwalled carbon nanotubes-IL/glassy carbon electrode (TyrH/PdPt NPs/Ch-IL/Gr-MWCNTsIL/GCE) | Tyrosine hydroxylase | Food | CV, DPV | 0.01 × 10−9–8.0 × 10−9 and 8.0 × 10−9–160.0 × 10−9 | 0.009 × 10−9 | [41] |
2 | Banana peel tissue tyrosinase/3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticle (B.P.Tyr/M/SN-MPT) | Tyrosinase | Banana peel tissue (Musa Cavendish) | CV, DPV | 5 × 10−8–6 × 10−4 | 2 × 10−8 | [42] |
3 | Hemin-modified graphene nanosheet electrode (HGN/GCE) | Hemin | Tyrosine | CV | 5 × 10−7–2 × 10−5 | 7.5 × 10−8 | [43] |
4 | Glassy carbon electrode with tyrosine hydroxylase and reduced graphene oxide (rGO/TyrHAS/GCE) | Tyrosine hydroxylase | Food | CV | 1 × 10−12–3.45 × 10−7 | 7 × 10−11 | [44] |
5 | Tyrosinase enzyme/multi-walled carbon nanotubes/polysulfone/glassy carbon electrode (TyOx/MWCNT/PSF/GCE) | Tyrosinase | Tyrosine | CV | 1.96 × 10−6–3.94 × 10−4 | 3 × 10−10 | [45] |
6 | Organic electrochemical transistor (OECT) by functionalizing a single cotton yarn with semiconducting PEDOT-modified cotton fiber | Fungal laccase POXA1b | Textile fiber | UV-VIS, CV | 10−8 and 10−2 | 10−8 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, A.; Apetrei, C. Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film. Polymers 2022, 14, 441. https://doi.org/10.3390/polym14030441
Dinu A, Apetrei C. Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film. Polymers. 2022; 14(3):441. https://doi.org/10.3390/polym14030441
Chicago/Turabian StyleDinu, Ancuța, and Constantin Apetrei. 2022. "Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film" Polymers 14, no. 3: 441. https://doi.org/10.3390/polym14030441
APA StyleDinu, A., & Apetrei, C. (2022). Quantification of Tyrosine in Pharmaceuticals with the New Biosensor Based on Laccase-Modified Polypyrrole Polymeric Thin Film. Polymers, 14(3), 441. https://doi.org/10.3390/polym14030441