Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew (Anacardium occidentale) Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cashew Leaf Extract
- Immature aqueous cashew leaves extracted in distilled water (IACLE)
- Immature ethanolic cashew leaves extracted in 70% ethanol (IECLE)
- Mature aqueous cashew leaves extracted in distilled water (MACLE)
- Mature ethanolic cashew leaves extracted in 70% ethanol (MECLE)
2.3. Total Phenolic Content (TPC) and 2,2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging (DPPH) Activity of CLE
2.4. Minimal Inhibitory Concentration (MIC), Minimal Fungicidal Concentration (MFC), and Disk Diffusion Test of CLE Samples
2.5. Preparation of a Chitosan Film Supplemented with CLE
- CH-CON (2% chitosan without CLE)
- CH-MACLE-5 (2% chitosan + 5% CLE from mature leaves extracted in deionized water)
- CH-MECLE-5 (2% chitosan + 5% CLE from mature leaves extracted in 70% ethanol)
2.6. Determination of Antifungal, Barrier, and Optical Properties of Chitosan Films Loaded with CLE
2.6.1. Antifungal Analysis of Chitosan Films without and with CLE
2.6.2. Water Vapor Transmission Rate (WVTR), Water Vapor Permeability (WVP), and Gas Transmission Rate (GTR) of Chitosan Films with Added CLE
2.6.3. Color Values and Thickness Measurement of Chitosan Films with Added CLE
2.6.4. Two-Photon Microscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant and Antifungal Properties of Aqueous and Ethanolic CLE
3.2. Antifungal Potential of CLE-Fortified Chitosan Films
3.3. Color Values and Appearance of Chitosan Films Containing CLE
3.4. Impact of CLE-Enriched Chitosan Films on the Thickness, Water Vapor Transmission Rate (WVTR), the Water Vapor Permeability (WVP), and the Oxygen Transmission Rate (OTR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Aguilar, R.I.; Díaz-Galindo, E.P.; Bautista-Baños, S.; Mendoza-Acevedo, S.; Munguía-Cervantes, J.E.; Correa-Pacheco, Z.N.; Bosquez-Molina, E. Monitoring the infection process of Rhizopus stolonifer on strawberry fruit during storage using films based on chitosan/polyvinyl alcohol/polyvinylpyrrolidone and plant extracts. Int. J. Biol. Macromol. 2021, 182, 583–594. [Google Scholar] [CrossRef]
- Rostami, M.; Yousefi, M.; Khezerlou, A.; Aman Mohammadi, M.; Jafari, S.M. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocoll. 2019, 97, 105170. [Google Scholar] [CrossRef]
- BeMiller, J.N. (Ed.) 6—Starches: Molecular and granular structures and properties. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; AACC International Press: Washington, DC, USA, 2019; pp. 159–189. [Google Scholar]
- Gao, H.-X.; He, Z.; Sun, Q.; He, Q.; Zeng, W.-C. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr. Polym. 2019, 215, 1–7. [Google Scholar] [CrossRef]
- Zhu, F. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr. Polym. 2020, 248, 116819. [Google Scholar] [CrossRef]
- Chisenga, S.M.; Tolesa, G.N.; Workneh, T.S. Biodegradable food packaging materials and prospects of the fourth industrial revolution for tomato fruit and product handling. Int. J. Food Sci. 2020, 2020, 8879101. [Google Scholar] [CrossRef]
- Fakhouri, F.; Martelli, S.; Caon, T.; Velasco, J.; Innocentini-Mei, L. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible films and coatings as food-quality preservers: An overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Homez-Jara, A.; Daza, L.D.; Aguirre, D.M.; Muñoz, J.A.; Solanilla, J.F.; Váquiro, H.A. Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Int. J. Biol. Macromol. 2018, 113, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Leceta, I.; Guerrero, P.; De la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Tezotto-Uliana, J.V.; Fargoni, G.P.; Geerdink, G.M.; Kluge, R.A. Chitosan applications pre-or postharvest prolong raspberry shelf-life quality. Postharvest Biol. Technol. 2014, 91, 72–77. [Google Scholar] [CrossRef]
- Sahraei Khosh Gardesh, A.; Badii, F.; Hashemi, M.; Ardakani, A.Y.; Maftoonazad, N.; Gorji, A.M. Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT 2016, 70, 33–40. [Google Scholar] [CrossRef]
- Duran, M.; Aday, M.S.; Zorba, N.N.D.; Temizkan, R.; Büyükcan, M.B.; Caner, C. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food Bioprod. Processing 2016, 98, 354–363. [Google Scholar] [CrossRef]
- Liu, K.; Liu, J.; Li, H.; Yuan, C.; Zhong, J.; Chen, Y. Influence of postharvest citric acid and chitosan coating treatment on ripening attributes and expression of cell wall related genes in cherimoya (Annona cherimola Mill.) fruit. Sci. Hortic. 2016, 198, 1–11. [Google Scholar] [CrossRef]
- Petriccione, M.; Pasquariello, M.; Mastrobuoni, F.; Zampella, L.; Patre, D.; Scortichini, M. Influence of a chitosan coating on the quality and nutraceutical traits of loquat fruit during postharvest life. Scientia Horticulturae 2015, 197, 287–296. [Google Scholar] [CrossRef]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020, 12, 1397. [Google Scholar] [CrossRef]
- Li, H.; Wang, F. Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing. Mater. Des. 2021, 204, 109683. [Google Scholar] [CrossRef]
- Rezaei, N.; Hamidabadi, H.G.; Khosravimelal, S.; Zahiri, M.; Ahovan, Z.A.; Bojnordi, M.N.; Eftekhari, B.S.; Hashemi, A.; Ganji, F.; Darabi, S.; et al. Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. Int. J. Biol. Macromol. 2020, 164, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: In vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2018, 122, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M.A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H.V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomed. 2021, 16, 6983–7022. [Google Scholar] [CrossRef] [PubMed]
- Bajić, M.; Ročnik, T.; Oberlintner, A.; Scognamiglio, F.; Novak, U.; Likozar, B. Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packag. Shelf Life 2019, 21, 100365. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables. Int. J. Polym. Sci. 2016, 2016, 4851730. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, H.; Jingga, M.E.; Saragih, H.T. The effect of cashew leaf extract on small intestine morphology and growth performance of Jawa Super chicken. Vet. World 2018, 11, 1047–1054. [Google Scholar] [CrossRef]
- Anand, G.; Ravinanthan, M.; Basaviah, R.; Shetty, A.V. In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care. J. Pharm. Bioallied. Sci. 2015, 7, 69–74. [Google Scholar] [CrossRef]
- Ajileye, O.O.; Obuotor, E.M.; Akinkunmi, E.O.; Aderogba, M.A. Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L. (Anacardiaceae) leaf extract. J. King Saud Univ. Sci. 2015, 27, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Liangpanth, M.; Tongdeesoontorn, W. Application of active edible coating from chitosan incorporated with cashew (Anacardium occidentale) leaf extracts for extending shelf-life of lime fruits. J. Food Sci. Agric. Technol. 2019, 5, 30–40. Available online: https://rs.mfu.ac.th/ojs/index.php/jfat (accessed on 13 December 2021).
- Lu, Q.; Lv, S.; Peng, Y.; Zhu, C.; Pan, S. Characterization of phenolics and antioxidant abilities of red navel orange “Cara Cara” harvested from five regions of China. Int. J. Food Prop. 2018, 21, 1107–1116. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Antioxidant and antibacterial properties of guava leaf extracts as affected by solvents used for prior dechlorophyllization. J. Food Biochem. 2018, 42, e12600. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Tagrida, M.; Benjakul, S. Betel (Piper betle L.) leaf ethanolic extracts dechlorophyllized using different methods: Antioxidant and antibacterial activities, and application for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. RSC Adv. 2021, 11, 17630–17641. [Google Scholar] [CrossRef]
- Tayel, A.; Moussa, S.; Salem, D.M.; Mazrou, K.; El-Tras, W. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite: Control of citrus molds using bioactive coatings. J. Sci. Food Agric. 2015, 96, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Luesuwan, S.; Naradisorn, M.; Shiekh, K.A.; Rachtanapun, P.; Tongdeesoontorn, W. Effect of active packaging material fortified with clove essential oil on fungal growth and post-harvest quality changes in table grape during cold storage. Polymers 2021, 13, 3445. [Google Scholar] [CrossRef]
- Kaya, M.; Khadem, S.; Cakmak, Y.S.; Mujtaba, M.; Ilk, S.; Akyuz, L.; Salaberria, A.M.; Labidi, J.; Abdulqadir, A.H.; Deligöz, E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018, 8, 3941–3950. [Google Scholar] [CrossRef] [Green Version]
- Rawdkuen, S.; Suthiluk, P.; Kamhangwong, D.; Benjakul, S. Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme. Chem. Cent. J. 2012, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Jančič, U.; Božič, M.; Hribernik, S.; Mohan, T.; Kargl, R.; Kleinschek, K.S.; Gorgieva, S. High oxygen barrier chitosan films neutralized by alkaline nanoparticles. Cellulose 2021, 28, 10457–10475. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Sarbon, N.M. A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Biosci. 2021, 43, 101250. [Google Scholar] [CrossRef]
- Crouvisier Urion, K.; Bodart, P.; Winckler, P.; Raya, J.; Gougeon, R.; Cayot, P.; Domenek, S.; Debeaufort, F.; Karbowiak, T. Biobased Composite Films from Chitosan and Lignin: Antioxidant Activity Related to Structure and Moisture. ACS Sustain. Chem. Eng. 2016, 4, 6371–6381. [Google Scholar] [CrossRef]
- Ahmad Shiekh, K.; Odunayo Olatunde, O.; Zhang, B.; Huda, N.; Benjakul, S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem. 2021, 359, 129976. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.; Benjakul, S.; Huda, N.; Zhang, B. Ethanolic Noni (Morinda citrifolia L.) leaf extract dechlorophyllised using sedimentation process: Antioxidant, antibacterial properties and efficacy in extending the shelf-life of striped catfish slices. Int. J. Food Sci. Technol. 2020, 56, 2804–2819. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Tan, S.L.D.; Shiekh, K.A.; Benjakul, S.; Nirmal, N.P. Ethanolic guava leaf extracts with different chlorophyll removal processes: Anti-melanosis, antibacterial properties and the impact on qualities of Pacific white shrimp during refrigerated storage. Food Chem. 2021, 341, 128251. [Google Scholar] [CrossRef] [PubMed]
- Gaber, N.B.; El-Dahy, S.I.; Shalaby, E.A. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
- Oladele, O.O.; Ishola, M.A. Activities of leaf extracts of cashew (Anacardium occidentale L.) and pawpaw (Carica papaya L.) against mycelia growth of Aspergillus species obtained from decayed cashew fruits. Med. Plant Res. 2017, 7. [Google Scholar] [CrossRef]
- Arullappan, S.; Zakaria, Z.; Basri, D.F. Preliminary screening of antibacterial activity using crude extracts of Hibiscus rosa sinensis. Trop. Life Sci. Res. 2009, 20, 109–118. [Google Scholar]
- Okla, M.K.; Alatar, A.A.; Al-amri, S.S.; Soufan, W.H.; Ahmad, A.; Abdel-Maksoud, M.A. Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh. Plants 2021, 10, 252. [Google Scholar] [CrossRef]
- Krastanov, A.; Alexieva, Z.; Yemendzhiev, H. Microbial degradation of phenol and phenolic derivatives. Eng. Life Sci. 2013, 13, 76–87. [Google Scholar] [CrossRef]
- Yuan, G.; Lv, H.; Yang, B.; Chen, X.; Sun, H. Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules 2015, 20, 11034–11045. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.; Fernando, A.; Pires, J.; Rodrigues, P.; Lopes, A.; Braz Fernandes, F. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Talón Argente, E.; Trifkovic, K.; Nedovic, V.; Branko, B.; Vargas, M.; Chiralt, A.; Gonzalez-Martinez, C. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr. Polym. 2016, 157, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Jaisan, C.; Punbusayakul, N. Development of coffee pulp extract-incorporated chitosan film and its antimicrobial and antioxidant activities. Asia-Pac. J. Sci. Technol. 2016, 21, 140–149. [Google Scholar] [CrossRef]
- Qian, W.; Tian, F.; Ziqian, F.; Fan, X.; Pan, Z.; Zhou, J. Antioxidant activity and physicochemical properties of chitosan films incorporated with Lycium barbarum fruit extract for active food packaging. Int. J. Food Sci. Technol. 2014, 50, 458–464. [Google Scholar] [CrossRef]
- López-Mata, M.A.; Ruiz-Cruz, S.; Silva-Beltrán, N.P.; Ornelas-Paz Jde, J.; Zamudio-Flores, P.B.; Burruel-Ibarra, S.E. Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 2013, 18, 13735–13753. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lin, S.; An, S.; Liu, L.; Hu, Y.; Wan, L. Preparation, characterization and anti-aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int. J. Biol. Macromol. 2019, 131, 420–434. [Google Scholar] [CrossRef]
- Peng, Y.; Yin, L.; Li, Y. Combined effects of lemon essential oil and surfactants on physical and structural properties of chitosan films. Int. J. Food Sci. Technol. 2013, 48, 44–50. [Google Scholar] [CrossRef]
- Sánchez González, L.; Gonzalez-Martinez, C.; Chiralt, A.; Cháfer, M. Physical and antimicrobial properties of chitosan-tea tree essential oil. J. Food Eng. 2010, 98, 443–452. [Google Scholar] [CrossRef]
- Shen, Z.; Kamdem, D.P. Development and characterization of biodegradable chitosan films containing two essential oils. Int. J. Biol. Macromol. 2015, 74, 289–296. [Google Scholar] [CrossRef]
CLE Samples | TPC (mg GAE/g) | DPPH | Inhibition Zone of CLE (mm) | MIC (μg/100 μL) | MFC (μg/100 μL) |
---|---|---|---|---|---|
IACLE | 644.6 ± 10.5 d | 381.7 ± 2.4 d | 9.2 ± 0.2 d | 25.0 ± 0.3 a | 50.0 ± 0.4 a |
IECLE | 795.2 ± 16.9 c | 392.4 ± 3.7 c | 10.1 ± 0.2 c | 6.25 ± 0.2 b | 12.5 ± 0.6 b |
MACLE | 872.2 ± 17.2 b | 401.3 ± 1.1 b | 12.3 ± 0.2 b | 3.12 ± 0.1 c | 6.25 ± 0.2 c |
MECLE | 1383.4 ± 42.1 a | 781.2±2.1 a | 14.2 ± 0.4 a | 1.5 ± 0.2 d | 3.25 ± 0.3 d |
Film Samples | L* | a* | b* | Inhibition Zone (mm) |
---|---|---|---|---|
CH-CON | 85.9 ± 1.5 a | 1.6 ± 0.3 c | −0.5 ± 0.3 c | - |
CH-MACLE-5 | 80.4 ± 1.1 b | 2.4 ± 0.1 b | 15.0 ± 0.6 b | 10.4 ± 1.6 b |
CH-MECLE-5 | 72.5 ± 0.5 c | 6.2 ± 0.2 a | 57.0 ± 0.8 a | 13.7 ± 1.3 a |
Films | Thickness (mm) | WVTR (g/m2·h) | WVP (g·m/m2·h·Pa) | OTR (cm3·/m2·day·Pa) |
---|---|---|---|---|
CH-CON | 0.0436 ± 0.001 c | 3.1 ± 0.5 a | 8.5 ± 0.3 × 10−8 a | 1.28 × 108 ± 5.8 × 106 a |
CH-IECLE-5 | 0.0579 ± 0.002 b | 1.9 ± 0.3 b | 6.9 ± 0.5 × 10−8 ab | 1030 ± 247.48 b |
CH-MECLE-5 | 0.0604 ± 0.001 a | 1.3 ± 0.2 c | 5.1 ± 0.8 × 10−8 c | 155 ± 24.04 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiekh, K.A.; Liangpanth, M.; Luesuwan, S.; Kraisitthisirintr, R.; Ngiwngam, K.; Rawdkuen, S.; Rachtanapun, P.; Karbowiak, T.; Tongdeesoontorn, W. Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew (Anacardium occidentale) Leaf Extract. Polymers 2022, 14, 540. https://doi.org/10.3390/polym14030540
Shiekh KA, Liangpanth M, Luesuwan S, Kraisitthisirintr R, Ngiwngam K, Rawdkuen S, Rachtanapun P, Karbowiak T, Tongdeesoontorn W. Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew (Anacardium occidentale) Leaf Extract. Polymers. 2022; 14(3):540. https://doi.org/10.3390/polym14030540
Chicago/Turabian StyleShiekh, Khursheed Ahmad, Mooksupang Liangpanth, Siriporn Luesuwan, Rinlanee Kraisitthisirintr, Kittaporn Ngiwngam, Saroat Rawdkuen, Pornchai Rachtanapun, Thomas Karbowiak, and Wirongrong Tongdeesoontorn. 2022. "Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew (Anacardium occidentale) Leaf Extract" Polymers 14, no. 3: 540. https://doi.org/10.3390/polym14030540
APA StyleShiekh, K. A., Liangpanth, M., Luesuwan, S., Kraisitthisirintr, R., Ngiwngam, K., Rawdkuen, S., Rachtanapun, P., Karbowiak, T., & Tongdeesoontorn, W. (2022). Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew (Anacardium occidentale) Leaf Extract. Polymers, 14(3), 540. https://doi.org/10.3390/polym14030540