Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Catalysts
2.3. Glycolysis Mechanism
2.4. Typical procedure of the Reaction
2.5. Experimental Design
2.6. Characterization
3. Results and Discussion
3.1. Preparation of PET Glycolysis Catalyst
3.2. Glycolysis of PET Using Oyster-Waste-Modifed Catalyst
3.3. Optimal Parameters on PET Glycolysis
3.4. Determination of the Regression Model
3.5. Response Surface Analysis
3.6. Optimization of PET Glycolysis by RSM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- SMITHERS. The Future of PET Packaging to 2025. Available online: https://www.smithers.com/services/market-reports/packaging/the-future-of-pet-packaging-to-2025 (accessed on 11 November 2021).
- Guo, Z.; Lindqvist, K.; de la Motte, H. An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst. J. Appl. Polym. Sci. 2018, 135, 46285. [Google Scholar] [CrossRef]
- Bai, B.; Liu, Y.; Zhang, H.; Zhou, F.; Han, X.; Wang, Q.; Jin, H. Experimental investigation on gasification characteristics of polyethylene terephthalate (PET) microplastics in supercritical water. Fuel 2020, 262, 116630. [Google Scholar] [CrossRef]
- Brooks Amy, L.; Wang, S.; Jambeck Jenna, R. The Chinese import ban and its impact on global plastic waste trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef] [Green Version]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Patel, M.R.; Patel, J.V. Pet Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010, 18, 8–25. [Google Scholar] [CrossRef]
- Raheem, A.B.; Noor, Z.Z.; Hassan, A.; Abd Hamid, M.K.; Samsudin, S.A.; Sabeen, A.H. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Prod. 2019, 225, 1052–1064. [Google Scholar] [CrossRef]
- Paszun, D.; Spychaj, T. Chemical Recycling of Poly(ethylene terephthalate). Ind. Eng. Chem. Res. 1997, 36, 1373–1383. [Google Scholar] [CrossRef]
- Wang, T.; Shen, C.; Yu, G.; Chen, X. Fabrication of magnetic bimetallic Co–Zn based zeolitic imidazolate frameworks composites as catalyst of glycolysis of mixed plastic. Fuel 2021, 304, 121397. [Google Scholar] [CrossRef]
- Geng, Y.; Dong, T.; Fang, P.; Zhou, Q.; Lu, X.; Zhang, S. Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polym. Degrad. Stab. 2015, 117, 30–36. [Google Scholar] [CrossRef]
- George, N.; Kurian, T. Recent Developments in the Chemical Recycling of Postconsumer Poly(ethylene terephthalate) Waste. Ind. Eng. Chem. Res. 2014, 53, 14185–14198. [Google Scholar] [CrossRef]
- Lorenzetti, C.; Manaresi, P.; Berti, C.; Barbiroli, G. Chemical Recovery of Useful Chemicals from Polyester (PET) Waste for Resource Conservation: A Survey of State of the Art. J. Polym. Environ. 2006, 14, 89–101. [Google Scholar] [CrossRef]
- Duque-Ingunza, I.; López-Fonseca, R.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Process optimization for catalytic glycolysis of post-consumer PET wastes. J. Chem. Technol. Biotechnol. 2014, 89, 97–103. [Google Scholar] [CrossRef]
- Ghaemy, M.; Mossaddegh, K. Depolymerisation of poly(ethylene terephthalate) fibre wastes using ethylene glycol. Polym. Degrad. Stab. 2005, 90, 570–576. [Google Scholar] [CrossRef]
- Chen, C.-H. Study of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. III. Further investigation. J. Appl. Polym. Sci. 2003, 87, 2004–2010. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, X.; Tang, S.; Lu, X.; Zhang, X.; Zhang, S. Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chem. 2012, 14, 2559–2566. [Google Scholar] [CrossRef]
- Zhu, M.; Li, S.; Li, Z.; Lu, X.; Zhang, S. Investigation of solid catalysts for glycolysis of polyethylene terephthalate. Chem. Eng. J. 2012, 185–186, 168–177. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, X.; Wang, Q.; Zhu, M.; Li, Z. Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids. Pure Appl. Chem. 2012, 84, 789–801. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Zhou, X.; Zhu, M.; He, H.; Zhang, X. 1-Allyl-3-methylimidazolium halometallate ionic liquids as efficient catalysts for the glycolysis of poly(ethylene terephthalate). J. Appl. Polym. Sci. 2013, 129, 3574–3581. [Google Scholar] [CrossRef]
- Castro, A.M.d.; Carniel, A.; Stahelin, D.; Chinelatto, L.S., Jr.; Honorato, H.d.A.; de Menezes, S.M.C. High-fold improvement of assorted post-consumer poly(ethylene terephthalate) (PET) packages hydrolysis using Humicola insolens cutinase as a single biocatalyst. Process. Biochem. 2019, 81, 85–91. [Google Scholar] [CrossRef]
- Bartolome, L.; Imran, M.; Lee, K.G.; Sangalang, A.; Ahn, J.K.; Kim, D.H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem. 2014, 16, 279–286. [Google Scholar] [CrossRef]
- Chen, F.; Yang, F.; Wang, G.; Li, W. Calcined Zn/Al hydrotalcites as solid base catalysts for glycolysis of poly(ethylene terephthalate). J. Appl. Polym. Sci. 2014, 131, 41053. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J.I. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym. Degrad. Stab. 2010, 95, 1022–1028. [Google Scholar] [CrossRef]
- Pingale, N.D.; Shukla, S.R. Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste. Eur. Polym. J. 2008, 44, 4151–4156. [Google Scholar] [CrossRef]
- Czitrom, V. One-Factor-at-a-Time versus Designed Experiments. Am. Stat. 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Van-Pham, D.-T.; Le, Q.-H.; Lam, T.-N.; Nguyen, C.-N.; Sakai, W. Four-factor optimization for PET glycolysis with consideration of the effect of sodium bicarbonate catalyst using response surface methodology. Polym. Degrad. Stab. 2020, 179, 109257. [Google Scholar] [CrossRef]
- Katoch, S.; Sharma, V.; Kundu, P.P.; Bera, M.B. Optimization of PET Glycolysis Process by Response Surface Methodological Approach: A Two-Component Modelling Using Glycolysis Time and Temperature. ISRN Polym. Sci. 2012, 2012, 630642. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wu, Y.; Zhu, Z. Optimization of Microwave-Assisted Preparation of TPA from Waste PET Using Response Surface Methodology. J. Polym. Environ. 2018, 26, 375–382. [Google Scholar] [CrossRef]
- Yunita, I.; Putisompon, S.; Chumkaeo, P.; Poonsawat, T.; Somsook, E. Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles. Chem. Pap. 2019, 73, 1547–1560. [Google Scholar] [CrossRef]
- Lim, J.; Cho, H.; Kim, J. Optimization of wet flue gas desulfurization system using recycled waste oyster shell as high-grade limestone substitutes. J. Clean. Prod. 2021, 318, 128492. [Google Scholar] [CrossRef]
- Aslan, N.; Cebeci, Y. Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 2007, 86, 90–97. [Google Scholar] [CrossRef]
- Liu, Q.; Li, R.; Fang, T. Investigating and modeling PET methanolysis under supercritical conditions by response surface methodology approach. Chem. Eng. J. 2015, 270, 535–541. [Google Scholar] [CrossRef]
- Payne, J.; Jones, M.D. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. ChemSusChem 2021, 14, 4041–4070. [Google Scholar] [CrossRef]
- Lalhmangaihzuala, S.; Laldinpuii, Z.; Lalmuanpuia, C.; Vanlaldinpuia, K. Glycolysis of Poly(Ethylene Terephthalate) Using Biomass-Waste Derived Recyclable Heterogeneous Catalyst. Polymers 2021, 13, 37. [Google Scholar] [CrossRef]
- Alvarez-Castillo, A.; Castaño, V.M. Studies on the crystallization of polyethylene terphthalate oligomer. J. Mater. Sci. Lett. 1995, 14, 139–141. [Google Scholar] [CrossRef]
- Shukla, S.R.; Harad, A.M. Glycolysis of polyethylene terephthalate waste fibers. J. Appl. Polym. Sci. 2005, 97, 513–517. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Zhang, X.; Qian, J.; Xing, X.; Wang, X. Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber. J. Macromol. Sci. Part A 2020, 57, 430–438. [Google Scholar] [CrossRef]
- Cano, I.; Martin, C.; Fernandes, J.A.; Lodge, R.W.; Dupont, J.; Casado-Carmona, F.A.; Lucena, R.; Cardenas, S.; Sans, V.; de Pedro, I. Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles—The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Appl. Catal. B Environ. 2020, 260, 118110. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Q.; Bu, R.; Yang, F.; Li, W. Kinetics of poly(ethylene terephthalate) fiber glycolysis in ethylene glycol. Fibers Polym. 2015, 16, 1213–1219. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kincl, M.; Turk, S.; Vrečer, F. Application of experimental design methodology in development and optimization of drug release method. Int. J. Pharm. 2005, 291, 39–49. [Google Scholar] [CrossRef]
- Gunaraj, V.; Murugan, N. Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J. Mater. Process. Technol. 1999, 88, 266–275. [Google Scholar] [CrossRef]
Variables, Unit | Factor | Coded Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Temperature (°C) | X1 | 175 | 185 | 195 |
Time (min.) | X2 | 10 | 35 | 60 |
Catalyst:PET (w/w) | X3 | 0.2 | 0.6 | 1 |
Standard Order | Run | Factor X1: Temperature (°C) | Factor X2: Time (min.) | Factor X3: Catalyst:PET (% w/w) | Response: Yield (%) |
---|---|---|---|---|---|
1 | 1 | 175 | 10 | 0.6 | 0.00 |
5 | 2 | 175 | 35 | 0.2 | 0.00 |
13 | 3 | 185 | 35 | 0.6 | 16.06 |
12 | 4 | 185 | 60 | 1 | 39.70 |
10 | 5 | 185 | 60 | 0.2 | 20.31 |
4 | 6 | 195 | 60 | 0.6 | 64.88 |
15 | 7 | 185 | 35 | 0.6 | 14.55 |
8 | 8 | 195 | 35 | 1 | 57.16 |
3 | 9 | 175 | 60 | 0.6 | 14.03 |
6 | 10 | 195 | 35 | 0.2 | 22.80 |
7 | 11 | 175 | 35 | 1 | 12.21 |
2 | 12 | 195 | 10 | 0.6 | 20.29 |
11 | 13 | 185 | 10 | 1 | 6.94 |
9 | 14 | 185 | 10 | 0.2 | 0.00 |
14 | 15 | 185 | 35 | 0.6 | 13.96 |
Source | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|
Linear | 0.8714 | 0.8364 | 0.738 | 15.3862 |
2FI | 0.9459 | 0.9049 | 0.7668 | 15.5298 |
Quadratic | 0.9891 | 0.9696 | 0.8297 | 24.1331 |
Source | Sum of | Degree of | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Squares | Freedom | |||||
Model | 5260.9 | 9 | 584.54 | 50.59 | 0.0002 | Yes |
X1 | 2411.2 | 1 | 2411.2 | 208.66 | <0.0001 | Yes |
X2 | 1559.4 | 1 | 1559.4 | 134.95 | <0.0001 | Yes |
X3 | 664.32 | 1 | 664.32 | 57.49 | 0.0006 | Yes |
X1X2 | 233.48 | 1 | 233.48 | 20.2 | 0.0064 | Yes |
X1X3 | 122.68 | 1 | 122.68 | 10.62 | 0.0225 | Yes |
X2X3 | 38.74 | 1 | 38.74 | 3.35 | 0.1266 | No |
X12 | 224.95 | 1 | 224.95 | 19.47 | 0.0069 | Yes |
X22 | 8.36 | 1 | 8.36 | 0.7232 | 0.4339 | No |
X32 | 0.2358 | 1 | 0.2358 | 0.0204 | 0.892 | No |
Residual | 57.78 | 5 | 11.56 | |||
Lack of Fit | 56.43 | 3 | 18.81 | 27.88 | 0.0348 | Yes |
Pure Error | 1.35 | 2 | 0.6745 | |||
Cor Total | 5318.68 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, M.; Hwang, J.; Im, E.; Moon, G.D. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Polymers 2022, 14, 656. https://doi.org/10.3390/polym14040656
Kim Y, Kim M, Hwang J, Im E, Moon GD. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Polymers. 2022; 14(4):656. https://doi.org/10.3390/polym14040656
Chicago/Turabian StyleKim, Yonghwan, Minjun Kim, Jeongwook Hwang, Eunmi Im, and Geon Dae Moon. 2022. "Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology" Polymers 14, no. 4: 656. https://doi.org/10.3390/polym14040656
APA StyleKim, Y., Kim, M., Hwang, J., Im, E., & Moon, G. D. (2022). Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Polymers, 14(4), 656. https://doi.org/10.3390/polym14040656