Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications
Abstract
:Conflicts of Interest
References
- Loo, Y.L.; Register, R.A.; Ryan, A.J. Modes of crystallization in block copolymer microdomains: Breakout, templated, and confined. Macromolecules 2002, 35, 2365–2374. [Google Scholar] [CrossRef]
- Müller, A.J.; Balsamo, V.; Arnal, M.L.; Jakob, T.; Schmalz, H.; Abetz, V. Homogeneous nucleation and fractionated crystallization in block copolymers. Macromolecules 2002, 35, 3048–3058. [Google Scholar] [CrossRef]
- van Horn, R.M.; Steffen, M.R.; O’Connor, D. Recent progress in block copolymer crystallization. Polym. Cryst. 2018, 1, 10039. [Google Scholar] [CrossRef]
- Sangroniz, L.; Wang, B.; Su, Y.; Liu, G.; Cavallo, D.; Wang, D.; Müller, A.J. Fractionated crystallization in semicrystalline polymers. Prog. Polym. Sci. 2021, 115, 101376. [Google Scholar] [CrossRef]
- Loo, Y.-L.; Register, R.A. Crystallization within block copolymer mesophases. In Developments in Block Copolymer Science and Technology; John Wiley & Sons, Ltd.: Chichester, UK, 2004; pp. 213–243. [Google Scholar]
- Li, S.; Register, R.A. Crystallization in copolymers. In Handbook of Polymer Crystallization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 327–346. [Google Scholar]
- Huang, S.; Jiang, S. Structures and morphologies of biocompatible and biodegradable block copolymers. RSC Adv. 2014, 4, 24566–24583. [Google Scholar] [CrossRef]
- Castillo, R.V.; Müller, A.J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 2009, 34, 516–560. [Google Scholar] [CrossRef]
- He, W.N.; Xu, J.T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400. [Google Scholar] [CrossRef]
- Herman, J.-J.; Jérome, R.; Teyssié, P.; Gervais, M.; Gallot, B. Structural study on styrene/ε-caprolactone block copolymers in absence and in presence of a solvent of the polystyrene block. Die Makromol. Chem. 1981, 182, 997–1008. [Google Scholar] [CrossRef]
- Gervais, M.; Gallot, B. Structural study of polybutadiene-poly(ethylene oxide) block copolymers. Influence of the nature of the amorphous block on the refolding of the poly(ethylene oxide) chains. Die Makromol. Chem. 1977, 178, 1577–1593. [Google Scholar] [CrossRef]
- Morton, M.; Lee, N.-C.; Terrill, E.R. Elastomeric polydiene ABA triblock copolymers with crystalline end blocks. In ACS Symposium Series; Mark, J.E., Lal, J., Eds.; American Chemical Society: Washington, DC, USA, 1982; pp. 101–118. [Google Scholar]
- O’Malley, J.J.; Stauffer, W.J. Morphology and properties of crystalline polyester-siloxane block copolymers. Polym. Eng. Sci. 1977, 17, 510–514. [Google Scholar] [CrossRef]
- Hirata, E.; Ijitsu, T.; Soen, T.; Hashimoto, T.; Kawai, H. Domain structure and crystalline morphology of AB and ABA type block copolymers of ethylene oxide and isoprene cast from solutions. Polymer 1975, 16, 249–260. [Google Scholar] [CrossRef]
- Robitaille, C.; Prud’homme, J. Thermal and mechanical properties of a poly(ethylene oxide-b-isoprene-b-ethylene oxide) block polymer complexed with NaSCN. Macromolecules 1983, 16, 665–671. [Google Scholar] [CrossRef]
- Heuschen, J.; Jérôme, R.; Teyssié, P. Polycaprolactone-based block copolymers. II. Morphology and crystallization of copolymers of styrene or butadiene and ε-caprolactone. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 523–544. [Google Scholar] [CrossRef]
- Donth, E.; Kretzschmar, H.; Schulze, G.; Garg, D.; Höring, S.; Ulbricht, J. Influence of the chain-end mobility on the melt crystallization of the ethylene oxide (B) sequences in systems containing diblock AB and triblock ABA copolymers with methyl methacrylate (A). Acta Polym. 1987, 38, 260–270. [Google Scholar] [CrossRef]
- Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. Synthesis of SBC, SC and BC block copolymers based on polystyrene (S), polybutadiene (B) and a crystallizable poly(ε-caprolactone) (C) block. Macromol. Chem. Phys. 1996, 197, 1159–1169. [Google Scholar] [CrossRef]
- Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. Thermal behavior and spherulitic superstructures of SBC triblock copolymers based on polystyrene (S), polybutadiene (B) and a crystallizable poly(ε-caprolactone) (C) block. Macromol. Chem. Phys. 1996, 197, 3317–3341. [Google Scholar] [CrossRef]
- Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. “Superductile” semicrystalline ABC triblock copolymers with the polystyrene block (A) as the matrix. Macromolecules 1999, 32, 1226–1232. [Google Scholar] [CrossRef]
- Balsamo, V.; Stadler, R. Ellipsoidal core-shell cylindrical microphases in PS-b-PB-b-PCL triblock copolymers with a crystallizable matrix. Macromol. Symp. 1997, 117, 153–165. [Google Scholar] [CrossRef]
- Balsamo, V.; Müller, A.J.; von Gyldenfeldt, F.; Stadler, R. Ternary ABC block copolymers based on one glassy and two crystallizable blocks: Polystyrene-block-polyethylene-block-poly(ε-caprolactone). Macromol. Chem. Phys. 1998, 199, 1063–1070. [Google Scholar] [CrossRef]
- Floudas, G.; Reiter, G.; Lambert, O.; Dumas, P. Structure and dynamics of structure formation in model triarm star block copolymers of polystyrene, poly(ethylene oxide), and poly(ε-caprolactone). Macromolecules 1998, 31, 7279–7290. [Google Scholar] [CrossRef]
- Schmalz, H.; Böker, A.; Lange, R.; Krausch, G.; Abetz, V. Synthesis and properties of ABA and ABC triblock copolymers with glassy (A), elastomeric (B), and crystalline (C) blocks. Macromolecules 2001, 34, 8720–8729. [Google Scholar] [CrossRef]
- Schmalz, H.; Abetz, V.; Lange, R. Thermoplastic elastomers based on semicrystalline block copolymers. Compos. Sci. Technol. 2003, 63, 1179–1186. [Google Scholar] [CrossRef]
- Schmalz, H.; van Guldener, V.; Gabriëlse, W.; Lange, R.; Abetz, V. Morphology, surface structure, and elastic properties of PBT-based copolyesters with PEO-b-PEB-b-PEO triblock copolymer soft segments. Macromolecules 2002, 35, 5491–5499. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Neumann, S.; Khan, M.M.; Filiz, V.; Abetz, V. Influence of temperature upon properties of tailor-made PEBAX® MH 1657 nanocomposite membranes for post-combustion CO2 capture. J. Memb. Sci. 2014, 469, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Lillepärg, J.; Neumann, S.; Shishatskiy, S.; Abetz, V. A thermodynamic study of CO2 sorption and thermal transition of PolyActiveTM under elevated pressure. Polymer 2016, 93, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Abetz, C.; Shishatskiy, S.; Martin, J.; Müller, A.J.; Abetz, V. CO2 selective PolyActive membrane: Thermal transitions and gas permeance as a function of thickness. ACS Appl. Mater. Interfaces 2018, 10, 26733–26744. [Google Scholar] [CrossRef]
- Ladelta, V.; Zapsas, G.; Abou-Hamad, E.; Gnanou, Y.; Hadjichristidis, N. Tetracrystalline tetrablock quarterpolymers: Four different crystallites under the same roof. Angew. Chem. Int. Ed. 2019, 58, 16267–16274. [Google Scholar] [CrossRef] [Green Version]
- Palacios, J.K.; Mugica, A.; Zubitur, M.; Iturrospe, A.; Arbe, A.; Liu, G.; Wang, D.; Zhao, J.; Hadjichristidis, N.; Müller, A.J. Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers. RSC Adv. 2016, 6, 4739–4750. [Google Scholar] [CrossRef] [Green Version]
- Voet, V.S.D.; Tichelaar, M.; Tanase, S.; Mittelmeijer-Hazeleger, M.C.; ten Brinke, G.; Loos, K. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors. Nanoscale 2013, 5, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Massey, J.; Power, K.N.; Manners, I.; Winnik, M.A. Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: Nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethyl siloxane) micelles. J. Am. Chem. Soc. 1998, 120, 9533–9540. [Google Scholar] [CrossRef]
- MacFarlane, L.; Zhao, C.; Cai, J.; Qiu, H.; Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 2021, 12, 4661–4682. [Google Scholar] [CrossRef] [PubMed]
- Ganda, S.; Stenzel, M.H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 2020, 101, 101195. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Harniman, R.; Winnik, M.; Manners, I. Hierarchical assembly of cylindrical block comicelles mediated by spatially confined hydrogen-bonding interactions. J. Am. Chem. Soc. 2016, 138, 12902–12912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gao, Y.; Boott, C.E.; Hayward, D.W.; Harniman, R.; Whittell, G.R.; Richardson, R.M.; Winnik, M.A.; Manners, I. “Cross” supermicelles via the hierarchical assembly of amphiphilic cylindrical triblock comicelles. J. Am. Chem. Soc. 2016, 138, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Crassous, J.J.; Schurtenberger, P.; Ballauff, M.; Mihut, A.M. Design of block copolymer micelles via crystallization. Polymer 2015, 62, A1–A13. [Google Scholar] [CrossRef]
- Jia, L.; Zhao, G.; Shi, W.; Coombs, N.; Gourevich, I.; Walker, G.C.; Guerin, G.; Manners, I.; Winnik, M.A. A design strategy for the hierarchical fabrication of colloidal hybrid mesostructures. Nat. Commun. 2014, 5, 3882. [Google Scholar] [CrossRef] [Green Version]
- Rupar, P.A.; Chabanne, L.; Winnik, M.A.; Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 2012, 337, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Gilroy, J.B.; Gädt, T.; Whittell, G.R.; Chabanne, L.; Mitchels, J.M.; Richardson, R.M.; Winnik, M.A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566–570. [Google Scholar] [CrossRef]
- Gädt, T.; Ieong, N.S.; Cambridge, G.; Winnik, M.A.; Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 2009, 8, 144–150. [Google Scholar] [CrossRef]
- Petzetakis, N.; Dove, A.P.; O’Reilly, R.K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2011, 2, 955–960. [Google Scholar] [CrossRef]
- Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z.P.L.; Wilson, N.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 2017, 8, 4223–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M. Membrane separation of gaseous hydrocarbons by semicrystalline multiblock copolymers: Role of cohesive energy density and crystallites of the polyether block. Polymers 2021, 13, 4181. [Google Scholar] [CrossRef] [PubMed]
- Matxinandiarena, E.; Múgica, A.; Zubitur, M.; Ladelta, V.; Zapsas, G.; Cavallo, D.; Hadjichristidis, N.; Müller, A.J. Crystallization and morphology of triple crystalline polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) PE-b-PEO-b-PCL triblock terpolymers. Polymers 2021, 13, 3133. [Google Scholar] [CrossRef] [PubMed]
- María, N.; Maiz, J.; Martínez-Tong, D.E.; Alegria, A.; Algarni, F.; Zapzas, G.; Hadjichristidis, N.; Müller, A.J. Phase transitions in poly(vinylidene fluoride)/polymethylene-based diblock copolymers and blends. Polymers 2021, 13, 2442. [Google Scholar] [CrossRef]
- De Rosa, C.; Di Girolamo, R.; Cicolella, A.; Talarico, G.; Scoti, M. Double crystallization and phase separation in polyethylene—syndiotactic polypropylene di-block copolymers. Polymers 2021, 13, 2589. [Google Scholar] [CrossRef]
- Janoszka, N.; Azhdari, S.; Hils, C.; Coban, D.; Schmalz, H.; Gröschel, A.H. Morphology and degradation of multicompartment microparticles based on semi-crystalline polystyrene-block-polybutadiene-block-poly(L-lactide) triblock terpolymers. Polymers 2021, 13, 4358. [Google Scholar] [CrossRef]
- Hils, C.; Manners, I.; Schöbel, J.; Schmalz, H. Patchy micelles with a crystalline core: Self-assembly concepts, properties, and applications. Polymers 2021, 13, 1481. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, D. Solution self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. Polymers 2021, 13, 3131. [Google Scholar] [CrossRef]
- Bessif, B.; Pfohl, T.; Reiter, G. Self-seeding procedure for obtaining stacked block copolymer lamellar crystals in solution. Polymers 2021, 13, 1676. [Google Scholar] [CrossRef]
- Guerin, G.; Rupar, P.A.; Winnik, M.A. In-depth analysis of the effect of fragmentation on the crystallization-driven self-assembly growth kinetics of 1D micelles studied by seed trapping. Polymers 2021, 13, 3122. [Google Scholar] [CrossRef]
- Li, Z.; Pearce, A.K.; Dove, A.P.; O’Reilly, R.K. Precise tuning of polymeric fiber dimensions to enhance the mechanical properties of alginate hydrogel matrices. Polymers 2021, 13, 2202. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmalz, H.; Abetz, V. Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications. Polymers 2022, 14, 696. https://doi.org/10.3390/polym14040696
Schmalz H, Abetz V. Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications. Polymers. 2022; 14(4):696. https://doi.org/10.3390/polym14040696
Chicago/Turabian StyleSchmalz, Holger, and Volker Abetz. 2022. "Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications" Polymers 14, no. 4: 696. https://doi.org/10.3390/polym14040696
APA StyleSchmalz, H., & Abetz, V. (2022). Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications. Polymers, 14(4), 696. https://doi.org/10.3390/polym14040696