π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells
Abstract
:1. Introduction
2. Electronic Structure and Doping Mechanisms in -Conjugated Polymers
2.1. The Electronic Structure
2.2. Doping Mechanisms of Conjugated Polymers
2.2.1. P-Type Doping
2.2.2. N-Type Doping
3. Synthesis Methods and Modifications of -Conjugated Polymers
3.1. Oxidative Polymerizations
3.2. Metal-Catalyzed Cross-Coupling Reactions
3.2.1. Suzuki–Miyaura Cross-Coupling Reaction
3.2.2. Stille Cross-Coupling Reaction
3.2.3. Kumada Cross Coupling
4. π-Conjugated Polymers in Solar Cell Applications
4.1. General Working Principle of Solar Cells and Their Characteristics
- Generation of excitons due to absorption of sufficient number of photons by the semiconductor or absorbing materials that form a p-n junction;
- Diffusion of the generated excitons to the active interface of the p-n junction;
- Subsequent separation or dissociation of the photo-generated excitons into electrons and holes, referred to as charge carriers, at the junction;
- Transportation of the charge carriers using appropriate hole and electron transporting materials, commonly known as HTLs and ETLs;
- Lastly, collection of the charge carriers at the terminals of the junction, by anodic and cathodic electrodes, thereby resulting in electrical energy creation and flow.
4.2. Conjugated Polymers as Emitters/HTLs in Organic-Silicon Hybrid Heterojunction Solar Cells
4.3. π-Conjugated Polymers as HTLs in Organic Solar Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Hammer, N. Dynamic Relationship between Technological Innovations, Financial Development, Renewable Energy, and Ecological Footprint: Fresh Insights based on the STIRPAT Model for Asia Pacific Economic Cooperation Countries. Environ. Sci. Pollut. Res. 2021, 28, 15519–15536. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.E.; Grätzel, M.; et al. Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting. Nat. Photonics 2017, 11, 372–384. [Google Scholar] [CrossRef]
- Krishna, J.V.S.; Mrinalini, M.; Prasanthkumar, S.; Giribabu, L. Recent Advances on Porphyrin Dyes for Dye-Sensitized Solar Cells. In Dye-Sensitized Solar Cells; Academic Press: Cambridge, MA, USA, 2019; pp. 231–284. [Google Scholar]
- Prasanthkumar, S.; Giribabu, L. Recent Advances in Perovskite-based Solar Cells. Curr. Sci. 2016, 111, 1173–1181. [Google Scholar] [CrossRef]
- French, R.H.; Yang, H.E.; Bruckman, L.S. Future Trends and Perspectives. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 329–336. [Google Scholar]
- Bullock, J.; Hettick, M.; Geissbuhler, J.; Ong, A.J.; Allen, T.; Sutter-Fella, C.M.; Chen, T.; Ota, H.; Schaler, E.W.; Wolf, S.; et al. Efficient Silicon Solar Cells with Dopant-free Asymmetric Heterocontacts. Nat. Energy 2016, 1, 15031. [Google Scholar] [CrossRef]
- Battaglia, C.; Nicolas, S.M.; Wolf, S.; Yin, X.; Zheng, M.; Ballif, C.; Javey, A. Silicon Heterojunction Solar Cell with Passivated Hole Selective MoOx Contact. Appl. Phys. Lett. 2014, 104, 113902. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency Over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Richter, A.; Hermle, M.; Glunz, S.W. Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE J. Photovolt. 2013, 3, 1184. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D.; Levi, D.H.; Ho-Baillie, A.W.Y. Solar Cell Efficiency Tables (version 49). Prog. Photovolt. Res. Appl. 2017, 25, 3–13. [Google Scholar] [CrossRef]
- NREL. NREL Efficiency Chart for Solar Research Cells. 2020. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 January 2020).
- Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. Organic Photovoltaic cell with 17% Efficiency and Superior Processability. Natl. Sci. Rev. 2020, 7, 1239–1246. [Google Scholar] [CrossRef]
- Yan, T.; Song, W.; Huang, J. 16% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Adv. Mater. 2019, 31, 1902210. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J. Over 16% Efficiency Organic Photovoltaic Cells Enabled by a Chlorinated Acceptor with Increased Open-Circuit Voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Zhang, D.; Li, M. Achieving Over 16% Efficiency for Single-Junction Solar Cell. Sci. China Chem. 2019, 62, 746–752. [Google Scholar] [CrossRef]
- Nair, S.; Patel, S.B.; Gohel, J.V. Recent Trends in Efficiency-Stability Improvements in Perovskite solar cells. Mater. Today Energy 2020, 17, 100449. [Google Scholar] [CrossRef]
- Terao, J. Synthesis of Conjugated Polyrotaxanes and its Application to Molecular Wires. In Molecular Architectonics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 487–512. [Google Scholar]
- Yonkeu, A.L.D.; Ndipingwi, M.M.; Ikpo, C.; Nwambaekwe, K.; Yussuf, S.; Tesfay, H.; Iwuoha, E. Photoluminescence Quenching of a Novel Electroconductive Poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene) Star CoPolymer. Polymers 2020, 12, 2894. [Google Scholar] [CrossRef]
- Yi, N.; Abidian, M.R. Conducting Polymers and their Biomedical Applications. In Biosynthetic Polymers for Medicinal Applications; Woodhead Publishing: Sawston, UK, 2016; pp. 243–276. [Google Scholar]
- Ostroverkhova, O. Organic Photoelectronic Materials: Mechanisms and Applications. Chem. Rev. 2016, 116, 13279–13412. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Y.; Zhang, Y.; Li, Z.; Zhao, L. Quinoxaline-based Conjugated Polymers for Polymer Solar Cells. Polym. Chem. 2017, 8, 4613–4636. [Google Scholar] [CrossRef]
- Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Band Gap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115, 12633–12665. [Google Scholar] [CrossRef]
- Wang, C.; Dang, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef]
- Murad, A.R.; Iraqi, A.; Aziz, S.B.; Abdullah, S.N.; Brza, M.A. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers 2020, 12, 2627. [Google Scholar] [CrossRef]
- Militon, A.; Hiorns, R.C. Review of Electronic and Optical Properties of Semiconducting π-Conjugated Polymers: Applications in Optolectronics. Polym. Int. 2004, 53, 1397–1412. [Google Scholar] [CrossRef]
- Kumar, K.R.P.; Murali, M.G.; Udayakumar, D. Synthesis and Study of Optical Properties of Linear and Hyperbranched Conjugated Polymers Containing Thiophene and Rephenylamine Units. Monomers Polym. 2014, 7, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Shinar, R.; Shinar, J. Organic Electronics in Sensors and Biotechnology; McGraw-Hill: New York, NY, USA, 2009; pp. 419–425. [Google Scholar]
- Gomez, R.; Segura, J.L. Handbook of Organic Electronics and Photonics; American Scientific Pub: New Orleans, LA, USA, 2007; Volume 2, pp. 109–147. [Google Scholar]
- Nguyen, D.C.T.; Mai, V.; Tran, V.; Vu, V.; Lee, S. Use of Modified Pedot:PSS/Graphene Oxide dispersions as a Hole Transporting Layer for Inverted Bulk-Heterojunction Organic Solar Cells. Org. Electron. 2022, 100, 106388. [Google Scholar] [CrossRef]
- Solis-Vivanco, J.F.; De Moure-Flores, F.; Mayen-Hernandez, S.A.; Devi, R.A.; Gomez-Herrera, M.L.; Santos-Cruz, J. Optoelectrical Properties and Study of Thickness and Annealing in Poly-3-hexylthiophene ITO-free Organic Solar Cells with TiO2 and MoO3 as Transport Layers. Mat. Res. 2022, 25. [Google Scholar] [CrossRef]
- Kumari, J.M.K.W.; Senadeera, G.K.R.; Weerasinghe, A.M.J.S.; Thotawatthage, C.A.; Dissanayake, M.A.K.L. Effect of Polyaniline (Pani) on Efficiency Enhancement of Dye-Sensitized Solar Cells Fabricated with Poly(ethylene oxide_-based Gel Polymer Electrolytes. J. Solid State Electrochem. 2021, 25, 695–705. [Google Scholar] [CrossRef]
- Yu, X.; Shen, X.; Mu., X. High EfficiencyOrganic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion. Layer Sci. Rep. 2015, 5, 17371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Y.; Shen, Z.; Kundu, S.; Dennis, E.; Pang, S.; Tan, F.; Yue, G.; Gao, Y.; Dong, C.; Liu, R.; et al. Perovskite Solar Cells with Polyaniline Hole Transport Layers Surpassing a 20% Power Conversion Efficiency. Chem. Mater. 2021, 33, 4679–4687. [Google Scholar] [CrossRef]
- Salaneck, W.R.; Friend, R.H.; Bredas, J.L. Electronic Structure of Conjugated Polymers: Consequences of Electron-Lattice Coupling. Phys. Rep. 1999, 319, 231–251. [Google Scholar] [CrossRef]
- Pron, A.; Rannou, P. Processible Conjugated Polymers: From Organic Semiconductor to Organic Metals and Superconductors. Prog. Polym. Sci. 2002, 27, 135–190. [Google Scholar] [CrossRef]
- MacDiarmid, A.G. Synthetic metals: A novel Role for Organic Polymers. Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Kar, P. Introduction to Doping in Conjugated Polymer. Doping Conjug. Polym. 2013, 1–18. [Google Scholar]
- Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1979, 42, 1698. [Google Scholar]
- Kar, P. Doping Techniques for the Conjugated Polymer. In Doping in Conjugated Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 47–62. [Google Scholar]
- Farrell, T.P.; Kaner, R.B. Conducting Polymers. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 405–412. [Google Scholar]
- Kar, P. Classification of Dopants for the Conjugated Polymer. In Doping in Conjugated Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 19–46. [Google Scholar]
- Bredas, J.L.; Street, G.B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309–315. [Google Scholar] [CrossRef]
- Kar, P. Role of Dopant on the Conduction of Conjugated Polymer. In Doping in Conjugated Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 63–79. [Google Scholar]
- Yamamoto, J.; Furukawa, Y. Electronic and Vibrational Spectra of Positive Polarons and Bipolarons in Regioregular Poly(3-hexylthiophene) Doped with Ferric Chloride. J. Phys. Chem. B 2015, 119, 4788–4794. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, S. Chemical and Electrochemical Polymerization of Aniline using Tartaric Acid. Eur. Polym. J. 2001, 37, 975–981. [Google Scholar] [CrossRef]
- Zhao, D.; Li, L.; Niu, W.; Chen, S. Highly Conductive Polythiophene Film Doped with Chloroauric Acid for Dual-Mode Sensing of Volatile Organic Amines and Thiols. Sens. Actuator B—Chem. 2017, 243, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Erdem, E.; Sacak, M.; Karakisla, M. Synthesis and Properties of Oxalic Acid-Doped Polyaniline. Polym. Int. 1996, 39, 153–159. [Google Scholar] [CrossRef]
- Andaka, A.I.W.; Hafizah, M.A.E.; Manef, A. Electrical Conductivity and Microwave Characteristics of HCl and HClO4-Doped Polyaniline Synthesized through Chemical Oxidative Continuous Polymerization Process at Various Polymerization Temperatures. AIP Conf Proc. 2018, 2023, 020027. [Google Scholar]
- Shen, Y.; Wan, M. In-Situ Polymerization of Pyrrole with Sulfonic Acid as Dopant. Snth. Met. 1998, 96, 127–132. [Google Scholar] [CrossRef]
- Gourley, K.D.; Lillya, C.P.; Reynolds, J.R.; Chien, J.C.W. Electrical Conducting Polymers: AsF5-Doped Poly(phenylenevinylene) and its Analogues. Macromolecules 1984, 17, 1025–1033. [Google Scholar] [CrossRef]
- Tanaka, A.; Takashima, W.; Kaneto, K. Enhanced Swelling Behaviours of Polypyrrole Film Doped with Sulfonated Polyaniline. Chem. Lett. 2004, 33, 11. [Google Scholar] [CrossRef]
- Saghaei, J.; Fallahzadeh, A.; Yousefi, M.H. Improvement of Electrical Conductivity of PEDOT:PSS Films by 2-Methylimidazole Post Treatment. Org. Electron. 2015, 19, 70–75. [Google Scholar] [CrossRef]
- Noskov, Y.; Orgurtsov, N.; Bliznyuk, V.; Lvov, Y.; Myronyuk, I.; Pud, A. Synthesis and Properties of Core-Shell Halloysite-Polyaniline Nanocomposites. Appl. Nanosc. 2021, 1–10. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, R.C. Advances in Conductive Polymers. Eur. Polym. J. 1998, 34, 1053–1060. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Mammone, R.J.; Kaner, R.B.; Porter, S.J. The Concept of ‘Doping’ of Conducting Polymers: The Role of Reduction Potentials. Philos. Trans. R. Soc. Lond. A 1985, 314, 3–15. [Google Scholar]
- Nazzad, A.; Street, G.B. Pyrrole-Styrene Graft Copolymers. J. Chem. Soc. Chem. Commun. 1985, 375–376. [Google Scholar] [CrossRef]
- Toshima, N.; Hara, S. Direct Synthesis of Conducting Polymers from Simple Monomers. Prog. Polym. Sci. 1995, 20, 155–183. [Google Scholar] [CrossRef]
- Yoshimo, K.; Nakajima, S.; Sugimoto, R.I. Fusibility of Polythiophene Derivatives with Substituted Long Alkyl Chain and their Properties. Jpn. J. Appl. Phys. 1987, 23, L1038–L1039. [Google Scholar] [CrossRef]
- Ramoroka, M.E.; Mdluli, S.B.; John-Denk, V.S.; Modibane, K.D.; Arendse, C.J.; Iwuoha, E.I. Synthesis and Photovoltaics of 2,3,4,5-Tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl)Donor Polymer for Organic Solar Cell. Polymers 2021, 13, 2. [Google Scholar] [CrossRef]
- Baleg, A.A.; Jahed, N.M.; Arotiba, O.A.; Mailu, S.N.; Hendricks, N.R.; Baker, P.G.; Iwuoha, E.I. Synthesis and Characterization of Poly(propylene imine) Dendrimer-Polypyrrole Conducting Star CoPolymer. J. Electroanal. Chem. 2011, 652, 18–25. [Google Scholar] [CrossRef]
- Hai, T.P.; Matsukuma, H.; Sugimoto, R. Surface Modification of Polypropylene with Poly(3-hexylthiophene) via Oxidative Polymerization. React. Funct. Polym. 2018, 122, 167–174. [Google Scholar] [CrossRef]
- Hai, T.P.; Matsukuma, H.; Sugimoto, R. Grafting Poly(3-hexylthiophene) to the Surface of Polypropylene Using Oxidative Polymerization. Polymer 2017, 121, 247–255. [Google Scholar] [CrossRef]
- Wang, X.; Meng, S.; Ma, W.; Pionteck, J.; Gnanaseelan, M.; Zhou, Z.; Sun, B.; Qin, Z.; Zhu, M. Fabrication and Gas Sensing Behaviour of Poly(3,4-ethylenedioxythiophene) Coated Polypropylene Fiber with Engineered Interface. React. Funct. Polym. 2017, 112, 74–80. [Google Scholar] [CrossRef]
- Hai, T.P.; Sugimoto, R. Effect of Molar Ratio of Oxidizer/3-Hexylthiophene Monomer in Chemical Oxidative Polymerization of Poly(3-hexylthiophene). J. Mol. Struct. 2017, 1146, 660–668. [Google Scholar] [CrossRef]
- Brusamarello, C.Z.; Santos, L.M.; Romio, A.P.; Domenico, M.; Santos, A.F. Hermes de Araujo, P.H.; Sayer, C. Polypyrolle Production through Chemical Polymerization using Anionic and Cationic Dopants: The Influence of Synthesis Conditions and Reaction Kinetics. Mater. Today Commun. 2021, 26, 101740. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Howden, R.M.; Borrelli, D.C.; Gleason, K.K. Vapor Phase Oxidative Synthesis of Conjugated Polymers and Applications. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1329–1351. [Google Scholar] [CrossRef]
- Wei, Y.; Chan, C.C.; Tian, J.; Jang, G.W.; Hsueh, K.F. Electrochemical Polymerization of Thiophenes in the Presence of Biothiophene or Terthiophene: Kinetics and Mechanism of the Polymerization. Chem. Mater. 1991, 3, 888–897. [Google Scholar] [CrossRef]
- Ma, L.; Jayachandram, S.; Li, Z.; Song, Z.; Wang, W.; Luo, X. Antifouling and Conducting PEDOT Derivative Grafted with Polyglycerol for Highly Sensitive Electrochemical Protein Detection in Complex Biological Medial. J. Electroanal. Chem. 2019, 840, 272–278. [Google Scholar] [CrossRef]
- Cakal, D.; Cihaner, A.; Onal, A.M. Electrochemical and Optical Properties of Dicyclohexylmethyl Substituted Poly(3,4-propylenedioxythiophene) Analogue. J. Appl. Polym. Sci. 2018, 1350, 46214. [Google Scholar] [CrossRef]
- Cakal, D.; Cihaner, A.; Onal, A.M. Synthesis and Electropolymerization of Thieno [3,4-c]Pyrrole-4,6-Dione based Donor-Acceptor-Donor Type Monomers. J. Electroanal. Chem. 2020, 862, 114000. [Google Scholar] [CrossRef]
- Baleg, A.A.; Jahed, N.; Yonkeu, A.L.D.; Njomo, N.; Mbambisa, G.; Molapo, K.M.; Faku, X.G.; Fomo, G.; Makelane, H.; Tsegaye, A.; et al. Impedimetry and Microscopy of Electrosynthetic Poly(propylene imine)-co-polyprrole Conducting Dendrimeric Star CoPolymer. Electrochim. Acta 2014, 128, 448–457. [Google Scholar] [CrossRef]
- Olowu, R.A.; Ndangili, P.M.; Baleg, A.A.; Ikpo, C.O.; Njomo, N.; Baker, P.; Iwuoha, E. Spectroelectrochemical Dynamics of Dendritic Poly(propylene imine)-Polythiophene Star CoPolymer Aptameric 17β-Estradiol Biosensor. Int. J. Electrochem. Sci. 2011, 6, 1686–1708. [Google Scholar]
- Makelane, H.R.; Tovide, O.; Sunday, C.E.; Waryo, T.; Iwuoha, E.I. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine) Dendritic Star CoPolymer in Phenanthrene Sensing. Sensors 2015, 15, 22343–22363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sestelo, J.P.; Sarandeses, L.A. Advances in Cross-Coupling Reactions. Molecules 2020, 25, 4500. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.P.; Navrro, O. C-C Bond Formation by Cross-Coupling, Reference Module in Chemistry. In Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Nolan, S.P.; Navarro, O. C-C Bond Formation by Cross-Coupling. In Comprehensive Organometallic Chemistry III; Elsevier: Amsterdam, The Netherlands, 2007; Volume 11, pp. 1–37. [Google Scholar]
- Chen, Y.J.; Lu, T.Y. Synthesizing Optoelectronic Heteroaromatic Conjugated Polymers by Cross-Coupling Reactions. J. Organomet. Chem. 2004, 689, 4137–4148. [Google Scholar] [CrossRef]
- De Meijere, A.; Brase, S.; Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and more. In Metal-Catalyzed Cross-Coupling Reactions and More; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Suzuku, A. Recent Advances in the Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles. J. Organomet. Chem. 1999, 576, 147–168. [Google Scholar] [CrossRef]
- Maluenda, I.; Navarro, O. Recent Developments in the Suzuki-Miyaura Reaction: 2010–2014. Molecules 2015, 20, 7528–7557. [Google Scholar] [CrossRef] [PubMed]
- El-Maiss, J.; Dine, T.M.; Lu, C.; Karame, I.; Kanj, A.; Polychronopoulou, K.; Shaya, J. Recent Advances in Metal-Catalyzed Alkyl-Boron (C(sp3)-C(sp2)) Suzuki-Miyaura Cross Couplings. Catalysts 2020, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Yamamoto, Y. Cross-Coupling Reactions of Organoboranes: An Easy Method for C-C Bonding. Chem. Lett. 2011, 40, 894–901. [Google Scholar] [CrossRef]
- Blackemore, D. Chapter 1: Suzuki-Miyaura Coupling. In Synthetic Methods in Drug Delivery; RSC Publishing: Cambridge, UK, 2015; Volume 1, pp. 1–69. [Google Scholar]
- Miyaura, N.; Yamanda, K.; Suzuki, A. A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20, 3437–3440. [Google Scholar] [CrossRef] [Green Version]
- Krishna, A.; Lunchev, A.V.; Grimsdale, A.C. Suzuki Polycondensation. Synthetic Methods for Conjugated Polymers and Carbon Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 59–95. [Google Scholar]
- Lee, J.J.; Noh, W.; Huh, T.; Kwark, Y.; Lee, T.S. Synthesis of Conjugated Microporous Polymer and its Embedding in Porous Nanofibers for Visible-Light-Driven Photocatalysis with Reusability. Polymer 2020, 211, 123060. [Google Scholar] [CrossRef]
- Murad, A.R.; Iraqi, A.; Azziz, S.B.; Abdullah, S.N.; Abdulwahid, R.T.; Hussen, S.A. Optical, Electrochemical, Thermal, and Structural Properties of Synthesized Fluorine/Dibenzosilole-Benzothiadiazole Dicarboxylic Imide Alternating Organic CoPolymers for Photovoltaic Application. Coatings 2020, 10, 1147. [Google Scholar] [CrossRef]
- Vazquez-Guillo, R.; Falcao, A.; Martinez-Tome, M.J.; Mateo, C.R.; Herrero, M.A.; Vazquez, E.; Mallavia, R. Advantageous Microwave-Assisted Suzuki Polycondensation for Synthesis of Aniline-Fluorene Alternate CoPolymers as Molecular Model with Solvent Sensing Property. Polymers 2015, 10, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.A.; Morgan, N.H.; Ujaqua, G.; Lledos, A.; Maseras, F. Computational Study of the Transmetalation Process in the Suzuki-Miyaura Cross-Couplings of Aryls. J. Organomet. Chem. 2006, 691, 4459–4466. [Google Scholar] [CrossRef]
- Ardhapure, A.V.; Gholap, A.; Schulzke, C.; Maiti, D.; Kapdi, A.R. Chapter-2- Stille Cross-Coupling Reaction: Early Years to the Current State of the Art, Palladium-Catalyzed Modification of Nucleosides. Nucleotides Oligonucleotides 2018, 19–36. [Google Scholar]
- Albeniz, A.C.; Carases, J.A. Chapter One-Palladium-Mediated Organofluorine Chemistry. Adv. Organomet. Chem. 2014, 62, 1–110. [Google Scholar]
- Barbero, H.; Diez-Poza, C.; Fernandez-Pena, L.; Barbero, A. Bicylic 5-6 Systems: Four Heteroatoms 3:1. Reference Module I Chemistry. In Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Levashov, A.S.; Buryi, D.S.; Goneharova, O.V.; Konshin, V.V.; Dotsenko, V.V.; Andreev, A.A. Tetraalkynylstanners in the Stille Cross Coupling Reaction: A New Effective Approach to Arlyalkynes. New J. Chem. 2017, 41, 2910–2918. [Google Scholar] [CrossRef] [Green Version]
- Carlos, C.; Camino, B.; Llarduya, M.; Ma, J.; Pablo, E. The Stille Reaction, 38 Years Later. ACS Catal. 2015, 5, 3040–3053. [Google Scholar]
- Malla, N. Toxicity and Cardiovascular Activity of Organotin Compounds: A Review. Appl. Organomet. Chem. 2008, 22, 598–612. [Google Scholar]
- Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century After the Discovery of Ullman Reaction. Chem. Rev. 2002, 102, 1359–1470. [Google Scholar] [CrossRef]
- Boyer, I.J. Toxicity of Dibutylin, Tributylin, and other Organotin Compounds to Humans and to Experimental Animals. Toxicology 1989, 55, 253–298. [Google Scholar] [CrossRef]
- Masanori, K.; Yutaka, S.; Toshihiko, M. Alkylation, Arylation, and Vinylation of Acyl Chlorides by Means of Organotin Compounds in the Presence of Catalytic Amounts of Tetrakis(triphenylphosphine)Palladium (0). Chem. Lett. 1977, 6, 1423–1424. [Google Scholar]
- Milstein, D.; Stille, J.K. A General, Selective and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catlayzed by Palladium. J. Am. Chem. Soc. 1978, 100, 3636–3638. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, K.H.; Jung, S.; Park, H.; Yang, C. Stepwise Heating in Stille Polycondensation Toward no Batch-to-Bath Variations in Polymer Solar Cell Performance. Nat. Commun. 2018, 9, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carsten, B.; He, F.; Son, H.J.; Xu, T.; Yu, L. Stille Polycondensation for Synthesis of Functional Materials. Chem. Rev. 2011, 111, 1493–1528. [Google Scholar] [CrossRef]
- Stille, J.K. Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Electrophiles. Angew. Chem. Int. Ed. 1986, 25, 508–524. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; You, W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules 2012, 45, 607–632. [Google Scholar] [CrossRef] [Green Version]
- Gramsdale, A.C.; Chan, K.L.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chem. Rev. 2009, 109, 897–1091. [Google Scholar] [CrossRef]
- McCulloh, I.; Heeney, M.; Bailey, C.; Genevicius, K.; McDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; et al. Liquid-Crystalline Semiconducting Polymers wit High Charge-Carrier Mobility. Nat. Mater. 2006, 5, 328–333. [Google Scholar] [CrossRef]
- Hanif, M.; Chen, L.; Zhu, L.; Zhao, D.; Xiong, T.; Hou, H. Stille Cross-Coupling Applied to get Higher Molecular Weight Polymers: Synthesis, Optoelectronic, Voc Properties, and Solar Cell Application. J. Appl. Polym. Sci. 2015, 42147. [Google Scholar] [CrossRef]
- Lin, X.; Guo, F.; Llancettee, R.A.; Jakle, F. Luminesent Main-Chain Organoborane Polymers: Highly Robust, Electron-Deficient Poly(oligothiophene boranes)s via Stille Coupling Polymerization. Macromolecules 2016, 49, 537–546. [Google Scholar]
- Kim, M.; Raj, M.R.; Kim, H.; Lee, G.; Park, C.W.; Park, T. A Comparative Study on the Thermal- and Microwave-Assisted Stille Coupling Polymerization of a Benzodithiophene-based Donor-Acceptor Polymer (PTB7). J. Mater. Chem. A 2017, 5, 3330–3335. [Google Scholar]
- Joshi-Pangu, A.; Wang, C.; Biscoe, M.R. Nickel-Catalyzed Kumada Cross-Coupling Reactions of Tertiary Alkylmagnesium Halides and Aryl Bromides/Triflates. J. Am. Chem. Soc. 2011, 133, 8478–8481. [Google Scholar] [CrossRef] [PubMed]
- Tamako, K.; Sumitani, K.; Kiso, Y.; Zembayeshi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Nickel-phosphine Complex-Catalyzed Grignard Coupling. I. Cross-Coupling of Alkyl, Aryl, and Alkenyl Grignard Reagents with Aryl and Alkenyl Halides. General Scope and Limitations. Bull. Chem. Soc. Jpn. 1976, 49, 1958–1969. [Google Scholar] [CrossRef]
- Tamako, K.; Sumitani, K.; Kumada, M. Selective Carbon-Carbon Bond Formation by Cross-Coupling of Grignard Reagents with Organic Halides. Catalysis by Nickel-Phosphine Complexes. J. Am. Chem. Soc. 1972, 94, 4374–4376. [Google Scholar] [CrossRef]
- Lowe, R.D.; McCullough, R.D. Enhanced Electrical Conductivity in Regioselectivity Synthesized Poly(3-alkylthiophenes). J. Chem. Soc. Chem. Commun. 1992, 70–72. [Google Scholar] [CrossRef]
- Xie, Z.; Wei, Q.; Shan, T.; Zheng, X.; Zhang, Y.; Zhang, H. Preparing Polythiophene Derivative with Alternating Alkyl and Thioalkyl Side Chains via Kumada Coupling for Efficient Organic Solar Cells. Polym. Chem. 2021, 12, 6456–6464. [Google Scholar] [CrossRef]
- Lee, Y.; Aplan, M.P.; Seibers, Z.D.; Kilbey, S.M.; Wang, Q.; Gomez, E.D. Tuning the Synthesis of Fully Conjugated Block Copolymers to Minimize Architectural Heterogeneity. J. Mater. Chem. A 2017, 5, 20412–20421. [Google Scholar] [CrossRef]
- Perez-Tomas, A.; Rogers, D.J. Giant Bulk Photovoltaic Effect in Solar Cell Architectures with Ultra-Wide Bandgap Ga2O3 Transparent Conducting Electrodes. Mater. Today Energy 2019, 14, 100350. [Google Scholar] [CrossRef] [Green Version]
- Yeh, N.; Yeh, P. Organic Solar Cells: Their Developments and Potentials. Renew. Sustain. Energy Rev. 2013, 21, 421–431. [Google Scholar] [CrossRef]
- Ulyashin, A.; Sytchkova, A. Hydrogen Related Phenome at the ITO/a-Si:H/Si Heterojunction Solar Cell Interfaces. Phys. Status Solid A 2013, 4, 711–716. [Google Scholar] [CrossRef]
- Du, H.W.; Yang, J.; Li, Y.H.; Xu, F.; Ma, Z.Q. Preparation of ITO/SiOx/n-Si Solar Cells with Non-Decline Potential Field and Hole Tunnelling by Magnetron Sputtering. Appl. Phys. Lett. 2015, 106, 093508. [Google Scholar] [CrossRef]
- Chauhan, R.N.; Singh, C.; Anand, R.S.; Kumar, J. Effect of Sheet Resistance and Morphology of ITO Thin-Films on Polymer Solar Cell Characteristics. Int. J. Photoenergy 2012, 2012, 879261. [Google Scholar] [CrossRef] [Green Version]
- Gwamuri, J.; Vora, A.; Khanal, R.R.; Phillips, A.B.; Heben, M.J.; Guney, D.O.; Bergstrom, P.; Kulkarni, A.; Pearce, J.M. Limitations of Ultra-Thin Transparent Conducting Oxides for Integration into Plasmonic-Enhanced Thin-Film Solar Photovoltaic Devices. Mater. Renew. Sustain Energy 2015, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abdulrazzaq, O.A.; Saini, V.; Bourdo, S.; Dervishi, E.; Biris, A.S. Organic Solar Cells: A Review of Materials, Limitations, and Posibilities for Improvement. Part. Sci. Technol. 2013, 31, 427–442. [Google Scholar] [CrossRef]
- Martin De Nicolas, S.; Munoz, D.; Ozanne, A.S.; Nguyen, N.; Ribeyron, P.J. Optimisation of Doped Amorphous Silicon Layers Applied to Heterojunction Solar Cells. Energy Procedia 2011, 8, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cuevas, A.; Demaurex, B.; De Wolf, S. Sputtered Hydrogenated Amorphous Silicon for Silicon Heterojunction Solar Fabrication. Energy Procedia 2014, 55, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fuyita, K.; Maruyama, E. 24.7% Record Efficiency HIT Solar Cell on Thin-film Silicon Wafer. IEEE J. Photovolt. 2014, 4, 1–96. [Google Scholar] [CrossRef]
- Panasonic. Panasonic HIT (R) Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level. 2014. Available online: http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html (accessed on 16 April 2014).
- Hsu, C.; Zhang, X.; Zhao, M.J.; Lin, H.; Zhu, W.; Lien, S. Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Aeberhard, U.; Finger, F.; Rau, U. Silicon Heterojunction Solar Cell with Amorphous Silicon Oxide Buffer and Microcrystalline Silicon Oxide Contact Layers. Phys. Status Solidi-Rapid. Res. Lett. 2012, 6, 193–195. [Google Scholar] [CrossRef]
- Leilaeioun, M.; Weigand, W.; Boccard, M.; Yu, Z.J.; Fisher, K.; Holman, Z.C. Contact Resistivity of the p-Type Amorphous Silicon Hole Contact in Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2019, 1–9. [Google Scholar] [CrossRef]
- Ling, Z.P.; Ge, J.; Mueller, T.; Wong, J.; Aberle, A.G. Optimisation of p-Doped μc-Si:H Emitter Layers in Crystalline-Amorphous Silicon Heterojunction Solar Cells. Energy Procedia 2012, 15, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.S.; Khang, D.Y. High Efficiency (>17%) Si-Organic Hybrid Solar Cells by Simultaneous Structural, Electrical, and Interfacial Engineering via Low-Temperature Processes. Adv. Energy Mater. 2017, 8, 1702655. [Google Scholar] [CrossRef]
- Kasahara, K.; Hossain, J.; Harada, D.; Ichikawa, K.; Ishikawa, R.; Shirai, H. Crystalline-Si Heterojunction with Organic Thin-Layer (HOT) SolarCell Module Using Poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS). Sol. Energy Mater. Sol Cells 2018, 181, 60. [Google Scholar] [CrossRef]
- Sato, K.; Dutta, M.; Fukat, N. Inorganic/Organic Hybrid Solar Cells: Optimal Carrier Transport in Vertically Aligned Silicon Nanowires Arrays. Nanoscale 2014, 6, 6092. [Google Scholar] [CrossRef] [PubMed]
- Alemu, D.; Wei, H.Y.; Ho, K.C.; Chu, C.W. Highly Conductive PEDOT:PSS Electrode by Simple Film Treatment with Methanol for ITO-free Polymer Solar Cells. Energy Environ. Sci. 2012, 5, 9662. [Google Scholar] [CrossRef]
- Weickert, J.; Sun, H.; Palumbiny, C.; Hesse, H.C.; Mende, L.S. Spray-Deposited PEDOT:PSS for Inverted Organic Solar Cells. Sol. Energy Mater. Sol Cells 2010, 94, 2371. [Google Scholar] [CrossRef] [Green Version]
- Zellmeir, M.; Rappich, J.; Klaus, M.; Genzel, C.; Janietz, S.; Frisch, J.; Koch, N.; Nickel, N.H. Side Chain Engineering of Polythiophene and its Impact on Crystalline Silicon based Hybrid Solar Cells. Appl. Phys. Lett. 2015, 107, 203301. [Google Scholar] [CrossRef]
- Avarsthi, S.; Lee, S.; Loo, Y.; Sturm, J.C. Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells. Adv. Mater. 2011, 23, 5762–5766. [Google Scholar] [CrossRef]
- Yan, W.B.; Ye, S.Y.; Li, Y.L.; Sun, W.H.; Rao, H.X.; Liu, Z.W.; Bian, Z.Q.; Huang, C.H. Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1600474. [Google Scholar] [CrossRef]
- Hou, W.; Xiao, Y.; Hou, G.; Lin, J. The Applications of Polymers in Solar Cells: A Review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Sin, D.H.; Ko, H.; Jo, S.B.; Kim, M.; Bae, G.Y.; Cho, K. Decoupling Charge Transfer and Transport at Polymeric Hole Transport Layer in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 6546–6553. [Google Scholar] [CrossRef] [PubMed]
- Umar, K.; Subramani, T.; Syu, H.; Lin, T.; Lin, C. Fabrication of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-Graphene Oxide Hybrid Solar Cells. J. Appl. Phys. 2015, 117, 105102. [Google Scholar]
- Mahato, S.; Puigdollers, J.; Voz, C.; Mukhopadhyay, M.; Mukherjee, M.; Hazra, S. Near 5% DMSO is the Best: A Structural Investigation of PEDOT:PSS Thin-Films with Strong Emphasis on Surface and Interface for Hybrid Solar Cell. Appl. Surf. Sci. 2020, 499, 143967. [Google Scholar] [CrossRef]
- Thuyagu, S.; Hsuh, C.; Liu, C.; Syu, H.; Lin, T.; Lin, C. Hybrid Organic-Inorganic Heterojunction Solar Cells with 12% Efficiency by Utilizing Flexible Film-Silicon with Hierarchical Surface. Nanoscale 2014, 6, 3361–3366. [Google Scholar] [CrossRef]
- He, J.; Gao, P.; Yang, Z.; Yu, J.; Yu, W.; Zhao, Y.; Sheng, J.; Ye, J.; Amine, J.C.; Cui, Y. Silicon/Organic Hybrid Solar Cells with 16.2% Efficiency and Improved Stability by Formation of Conformal Heterojunction Coating and Moisture-Resistant Capping Layer. Adv. Mater. 2017, 29, 1606321. [Google Scholar] [CrossRef]
- Ding, Y.; Gresback, R.; Liu, Q.; Zhou, S.; Pi, X.; Nozaki, T. Silicon Nanocrystal Conjugated Polymer Hybrid Solae Cells with Improved Performance. Nano Energy 2014, 9, 25–31. [Google Scholar] [CrossRef]
- Anh, N.N.; Van Chuc, N.; Thang, B.H.; Van Nhat, P.; Van Hao, N.; Phuong, D.D.; Minh, P.N.; Subramani, T.; Fukuta, N.; Van Trinh, P. Solar Cell based on Hybrid Structural SiNW/-Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/Graphene. Glob. Chall. 2020, 4, 2000010. [Google Scholar] [CrossRef]
- Kou, Y.; Liu, K.; Wang, Z.; Chi, D.; Lu, S.; Yue, S.; Li, Y.; Qu, S.; Wang, Z. Hybrid Silicon Nanocone-Polymer Solar Cells based on a Transparent Top Electrode. RSC Adv. 2015, 5, 42341–42345. [Google Scholar] [CrossRef]
- Zhang, F.; Han, X.; Lee, S.; Sun, B. Heterojunctions with Organic Thin Layer for Three-Dimensional High-Performance Hybrid Solar Cells. J. Mater. Chem. 2012, 22, 5362. [Google Scholar] [CrossRef]
- Chiang, C.H.; Nazesruddini, M.K.; Gratzel, M.; Wu, C.G. The Synergistic Effect of H2O and DMF Towards Stable and 20% Efficiency Inverted Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 808–817. [Google Scholar] [CrossRef]
- Xue, Q.F.; Chen, G.T.; Liu, M.Y.; Xiao, J.Y.; Chen, Z.M.; Hu, Z.C.; Jiang, X.F.; Zhang, B.; Huang, F.; Yang, W. Improving Film Formation and Photovoltage of Highly Efficient Inverted-type Perovskite Solar Cells Through the Incorporation of New Polymeric Hole Selective Layers. Adv. Energy Mater. 2016, 6, 150221. [Google Scholar] [CrossRef]
- Zhao, D.W.; Sexton, M.; Park, H.Y.; Baure, G.; Nino, J.C.; So, F. High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Adv. Energy Mater. 2014, 5, 1401855. [Google Scholar] [CrossRef]
- Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D.D.C.; Durrant, J.R. Degradation of Organic Solar Cells due to Air Exposure. Sol. Energy Mater. Sol Cells 2006, 90, 3520–3530. [Google Scholar] [CrossRef]
- Jϕrgensen, M.; Norrman, K.; Krebs, F.C. Stability/Degradation of Polymer Solar Cells. Sol. Energy Mater. Sol Cells 2008, 92, 686–714. [Google Scholar] [CrossRef]
- Zellmeier, M.; Kuhnapfel, S.; Rech, B.; Nickel, N.H.; Rappich, J. Enhanced Stability of P3HT/Poly-Crystalline Si Thin-Film Hybrid Solar Cells. Phys. Status Solidi A 2016, 213, 1–5. [Google Scholar] [CrossRef]
- Zielke, D.; Pazidis, A.; Werner, F.; Schmidt, J. Organic-Silicon Heterojunction Solar Cells on n-Type Silicon Wafer: The blackPEDOT Concept. Sol. Energy Mater. Sol Cells 2014, 131, 110–116. [Google Scholar] [CrossRef]
- Gogolin, R.; Zielke, D.; Descoeudres, A.; Despeisee, M.; Ballif, C.; Schmidt, J. Demonstrating the High Voc Potential of PEDOT:PSS/c-Si Heterojunction on Solar Cells. Energy Procedia 2017, 124, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Zielke, D. Organic-Silicon Heterostructure: A Promising New Concept for High Efficiency Solar Cells. In Proceedings of the 6th WCPEC, Kyoto, Japan, 23–27 November 2014. [Google Scholar]
- Zielke, D.; Niehaves, C.; Lovenich, W.; Elschner, A.; Horteis, M.; Schmidt, J. Organic-Silicon Exceeding 20% Efficiency. Energy Procedia 2015, 77, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Jackle, S.; Liebhaber, M.; Gersmann, C.; Mews, M.; Jager, K.; Christiansen, S.; Lips, K. Potential of PEDOT:PSS as a Hole Selective Front Contact for Silicon Heterojunction Solar Cells. Sci. Rep. 2017, 7, 2170. [Google Scholar] [CrossRef]
- Ge, Z.; Xu, L.; Cao, Y.; Wu, T.; Song, H.; Ma, Z.; Xu, J.; Chen, K. Substantial Improvement of Short Wavelength Response in n-SiNW/PEDOT:PSS. Nanoscale Res. Lett. 2015, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, J.; Ge, K.; Guo, J.; Duan, Q.; Li, F.; Xu, Y.; Mai, Y. Polymer/Si Heterojunction Hybrid Solar Cells with Rubrene:DMSO Organic Semiconductor Film as an Electron-Selective Contact. J. Phys. Chem. 2018, 122, 23371–23376. [Google Scholar] [CrossRef]
- Chen, T.; Guo, H.; Yu, L.; Sun, T.; Chen, A.; Wang, J.; Wang, C.; Yang, Y. Antireflection Improvement and Junction Quality Optimization Si/PEDOT:PSS Solar Cell with the Introduction of Dopamine@Graphene. Energies 2020, 13, 5986. [Google Scholar] [CrossRef]
- Shen, X.; Ma, B.; Chen, L.; Zhao, J. High Efficiency Conjugated Polymer/Si Hybrid Solar Cells with Tetramethylammonium Hydroxide Treatment. RSC Adv. 2017, 7, 688. [Google Scholar] [CrossRef] [Green Version]
- Junghanns, M.; Plentz, J.; Andra, G.; Gawlik, A.; Hoger, I.; Falk, F. PEDOT:PSS Emitters on Multicrystalline Silicon Thin-Film Absorbers for Hybrid Solar Cells. Appl. Phys. Lett. 2015, 106, 083904. [Google Scholar] [CrossRef]
- Iqbal, S.; Su, D.; Yang, Y.; Ullah, F.; Zhou, H.; Hussain, A.; Zhang, T. Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT:PSS. Micromachines 2019, 10, 648. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; et al. Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for High-Efficiency Polymer Solar Cells. Adv. Mater. 2019, 31, 1905480. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pan, M.; Sun, R.; Agunawela, I.; Zhang, J.; Li, Y.; Qi, Z.; Pan, H.; Zhou, X.; Chen, S.; et al. Regio-Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All-Polymer Solar Cells with 15.2% Efficiency. Angew. Chem. Int. Ed. 2021, 133, 10225–10234. [Google Scholar] [CrossRef]
- Yu, G.; Heeger, A.J. Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor-Acceptor Heterojunctions. J. Appl. Phys. 1995, 78, 4510–4515. [Google Scholar] [CrossRef]
- Lin, F.; Jiang, K.; Kaminsky, W.; Zhu, Z.; Jen, A.K.Y. A Non-Fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2020, 142, 15246–15251. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Zhu, C.; Yuang, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qui, B.; Peng, H.; Chen, S.; et al. Tuning the Electron-Deficient-Core of Non-Fullerene Acceptor to Achieve Over 17% Efficiency in Single-Junction Organic Solar Cell. Energy Environ. Sci. 2020, 13, 2459–2466. [Google Scholar] [CrossRef]
- Li, S.; Li, C. –Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and their Perspective. ACS Energy Lett. 2020, 5, 1554–1567. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Zhang, Q.; Chen, S.-C.; Cai, D. Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltage Over 1.0 Volt. ACS Appl. Mater Interfaces 2013, 5, 9015–9025. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Song, W.; Lei, T.; Xu, B.; Yan, F.; Weng, N.; Cui, H.; Ge, Z. High-Efficient Robust Organic Solar Cells Using Transfer-Printed PEDOT:PSS Electrodes Through Interface Bonding Engineering. Mater. Chem. Front. 2019, 3, 901–908. [Google Scholar] [CrossRef]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research Progress on Polymer Solar Cells based on PEDOT:PSS Electrodes. Polymers 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on Application of PEDOT and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 1–25. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, J.; Hao, Z.; Zhao, Y. Influence of Doped PEDOT:PSS on the Performance of Polymer Solar Cells. Sol. Energy Mater. Sol Cells 2011, 95, 2763–2767. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Chen, S.; Zou, J.; Xie, W.; Zeng, X. Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High-Performance Silicon/Organic Hybrid Solar Cells. Nanoscale Res. Lett. 2017, 12, 506. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with Over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Anagnostou, K.; Stylianakis, M.M.; Petridis, K.; Kymakis, E. Building an Organic Solar Cell: Fundamental Procedures for Device Fabrication. Energies 2019, 12, 2188. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, M.; Cui, C.; Hou, J.; Li, Y. Efficient Polymer Solar Cells based on Poly(3-hexylthiophene) and Indene-C60 Bisadduct Fabricated with Non-Halogenated Solvents. ACS Appl. Mater Interfaces 2014, 6, 8190–9198. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Liu, J.; Bergqvist, J.; Shi, S.; Veit, C.; Wurfel, U.; Xie, Z.; Zhang, F. In-Situ Formation Of MoO3 in PEDOT:PSS Matrix: Afacile way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2013, 3, 349–355. [Google Scholar] [CrossRef]
- Norrman, K.; Madsen, M.V.; Gevorgyan, S.A.; Krebs, F.C. Degradation Patterns in Water and Oxygen on Inverted Polymer Solar Cells. J. Am. Chem. Soc. 2010, 132, 16883–16892. [Google Scholar] [CrossRef] [PubMed]
- Jong, M.P.; Van Ijzendoorn, L.J.; Voigt, M.J.A. Stability of the Interface Between Indium-Tin-Oxide and Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) in Polymer Light-Emitting Diodes. Appl. Phys. Lett. 2000, 77, 2255. [Google Scholar] [CrossRef]
- Cao, H.; He, W.; Mao, Y.; Liu, X.; Ishikawa, K.; Dickerson, J.H.; Hess, W.P. Recent Progress in Degradation and Stabilization of Organic Solar Cells. J. Power Sources 2014, 264, 168–183. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, Z.; Yu, H.; Huang, X.; Chen, M. Effect of Trifluoroacetic Acid Treatment of PEDOT:PSS Layers on the Performance and Stability of Organic Solar Cells. J. Mater. Sci. Mater. Electron. 2018, 29, 6607–6618. [Google Scholar] [CrossRef]
- Xu, B.; Sai-Anand, G.; Jeong, H.; Kim, S.-W.; Kim, J.-S.; Kwon, J.-B.; Kang, S.-W. Improving Air-Stability and Performance of Bulk Heterojunction Polymer Solar Cells Using Solvent Engineered Hole Selective Interlayer. Materials 2018, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Y.; Mai, C.; Seifter, J.; Nguyen, T.; Bazan, G.C.; Heeger, A.J. Solution-Processed pH-Neutral Conjugated Polyelectrolyte Improves Interfacial Contact in Organic Solar Cells. ACS Nano 2015, 9, 371–377. [Google Scholar] [CrossRef]
- Mai, C.K.; Zhou, H.; Zhang, Y.; Henson, Z.B.; Nguyen, T.Q.; Heeger, A.J.; Bazan, G.C. Facile Doping of Anionic Narrow-Band-Gap Conjugated Polyelectrolyte During Dialysis. Angew. Chem. Int. Ed. 2013, 52, 12874–12878. [Google Scholar] [CrossRef]
- Lee, W.; Seo, J.H.; Woo, H.Y. Conjugated Polyelectrolytes: A New Class of Semiconducting Material for Organic Electronic Devices. Polymer 2013, 54, 5104–5121. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.G.; Park, S.M.; Woo, H.Y.; Lee, T.W. Elucidating the Role of Conjugated Polyelectrolyte Interlayers for High-Efficiency Organic Photovoltaics. ChemSusChem 2015, 8, 3062–3068. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Hong, H.S.; Ha, Y.E.; Park, J.; Kang, Y.C.; Kim, J.H. Effect of Polyelectrolyte Electron Collection Layer Counteranion on the Properties of Polymer Solar Cells. ACS Appl. Mater Interfaces 2015, 7, 3335–3341. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Khadtare, S.; Wong, M.; Han, S.; Bazan, G.C.; Choi, H. Hole Transport Layer based on Conjugated Polyelectrolytes for Polymer Solar Cells. J. Colloid Interface Sci. 2018, 518, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, E.J.; Han, J.P.; Moon, D.K. Solution-Processed pH-Neutral Conjugated Polyelectrolytes with One-Atom Variation (O, S, Se) as a Novel Hole-Collecting Layer in Organic Photovoltaics. Sol. Energy Mater. Sol Cells 2016, 155, 243–252. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, J.; Xu, H.; Liao, X.; Chen, Y.; Li, Y.; Chen, L. Self-doped Polymer with Fluorinated Phenylene as Hole Transport Layer for Efficient Polymer Solar Cells. Org. Electron. 2018, 61, 207–214. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, G.; Zhu, J.; Kang, Q.; Yao, H.; Lu, L.; Xu, B.; Hou, J. The Critical Role of Anode Work Function in Non-Fullerene Organic Solar Cells Unveiled by Counterion-Size-Controlled Self-Doping Conjugated Polymers. Chem. Mater. 2018, 30, 1078–1084. [Google Scholar] [CrossRef]
- Lu, L.; Kang, Q.; Yang, Y.; Xu, B.; Hou, J. Conjugated Polymers Containing Sulfonic Fluorine Unit for Achieving Multiple Interfacial Modifications in Fullerene-free Organic Solar Cells. J. Phys. Chem. C 2018, 122, 19328–19337. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, B.; Yao, H.; Li, S.; Hou, J. A Novel pH Neutral Self-Doped Polymer for Anode Interfacial Layer in Efficient polymer solar cells. Macromolecules 2016, 49, 8126–8133. [Google Scholar] [CrossRef]
- Kang, Q.; Liao, Q.; Xu, Y.; Xu, L.; Zu, Y.; Li, S.; Xu, B. p-Doped Conducting Polyelectrolytes as an Anode Interlayer Enables High Efficiency for 1cm2 Printed Organic Solar Cells. ACS Appl. Mater Interfaces 2019, 11, 20205–20213. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Mai, C.; Collins, S.D.; Bazan, G.C.; Nguyen, T.; Heeger, A.J. Polymer Homo-Tandem Solar Sells with best Efficiency of 11.3%. Adv. Mater. 2015, 27, 1767–1773. [Google Scholar] [CrossRef]
- Xu, B.; Zheng, Z.; Zhao, K.; Hou, J. A Bifunctional Interlayer Material for Modifying both the Anode and Cathode in Highly Efficient Polymer Solar Cells. Adv. Mater. 2016, 28, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kong, J. An Alternative Hole Transport Layer for both ITO- and Graphene-based Organic Solar Cells. Adv. Energy Mater. 2014, 4, 1301280. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, J.; Jeong, S.Y.; Park, S.B.; Lee, S.H.; Lee, K. Broad Work-Function Tunability of p-Type Conjugated Polyelectrolytes for Efficient Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1401653. [Google Scholar] [CrossRef]
- Lee, J.; Lee, B.H.; Jeong, S.Y.; Park, S.B.; Kim, G.; Lee, S.H.; Lee, K. Radical Cation- Anion Coupling-Induced Work Function Tunability in Anionic Conjugated Polyelectrolytes. Adv. Energy Mater. 2015, 5, 1401292. [Google Scholar] [CrossRef]
- Cai, W.; Musumeci, C.; Ajjan, F.N.; Bao, Q.; Ma, Z.; Tang, Z.; Inganas, O. Self-Doped Conjugated Polyelectrolytes with Tuneable Work Function for Effective Hole Transport in Polymer Solar Cells. J. Mater. Chem. A 2015, 4, 15670–15675. [Google Scholar] [CrossRef]
Dopant Name | Conjugated Polymer-Dopant System | Conductivity (S.cm−1) | Dopant Counter Ion | Chemical Nature | Ref. |
---|---|---|---|---|---|
Ferric (III) Chloride | P3HT-FeCl3 | 6.3 × 101 | Cl− | Inorganic | [44] |
Tartaric acid (TA) | Pani-TA | 0.2 | C4H5O6− | Organic | [45] |
Chloroauric acid | P3HT-HAuCl4 | 71.7 | AuCl4− | Inorganic | [46] |
Oxalic acid (OA) | Pani-OA | 0.5 | C2HO4− | Organic | [47] |
Perchloric acid | Pani-HClO4 | 4.68 & 2.72 | ClO4− | Inorganic | [48] |
p-Hydroxybenzene sulfonic acid (HBSA) | PPY-HBSA | 11.0 | HAS− | Organic | [49] |
Arsenic pentafluoride | PPV-AsF5 | 1.0 | AsF5− | Inorganic | [50] |
Poly(2-methyoxyaniline-5-sulfonate) (PMSH) | PPY-PMSH | 2.0 | PMS− | Polymeric | [51] |
p-Dodecylbenzene sulfonic acid (DBSA) | PPY-DBSA | 2.0 | DBS− | Organic | [49] |
Poly(styrene sulfonic acid) (PSSA) | PEDOT-PSSA | 0.1–10.0 | PSS− | Polymeric | [52] |
p-Toluene sulfonic acid (TSA) | Pani-TSA | 1.2 × 10−2 | Tosylate | Organic | [53] |
-Naphthalene sulfonic acid (NSA) | PPY-NSA | 18.0 | NS- | Organic | [49] |
Dopant Name | Conjugated Polymer-Dopant System | Conductivity (S.cm−1) | Dopant Counter Ion | Chemical Nature | Ref. |
---|---|---|---|---|---|
Sodium | PA-Na | 104 | Na+ | Inorganic | [54] |
Potassium | Polyphenylene-K | 103 | K+ | Inorganic | [54] |
Lithium | Polyphenylene-Li | 103 | Li+ | Inorganic | [54] |
Lithium naphthanilide | PA-Li naphthanilide | 200 | Li+ | Inorganic | [55] |
Sodium naphthanilide | PA-Na naphthanilide | 25 | Na+ | Inorganic | [55] |
Monomer | Conjugated Polymer System | Polymerization Reaction System/Content | Oxidative Polymerization Type | Application | Ref. |
---|---|---|---|---|---|
3-hexylthiophene (3HT) | 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) | Palladium –catalysed synthesis of TTT, followed by polymerization of 3HT using FeCl3 in CHCl3 | Chemical | OSC | [59] |
3,4-ethylenedioxythiophene (EDOT) | G1Poly(propylene thiophenoimine)-co-poly(3,4-ethylenedioxythiophene) Star copolymer (G1PPT-co-PEDOT) | Schiff base condensation of G1PPT, followed by polymerization using (NH4)2S2O8 in H2O and CHCl3 | Chemical | Potential application on OSC | [18] |
Pyrrole (Py) | G1Poly(propylene imine)-co-Polypyrrole star copolymer (G1PPI-co-PPY) | Schiff base condensation of G1PPI-2Py, followed by polymerization using (NH4)2S2O8 in H2O and CHCl3 | Chemical | Potential application in sensors, and membranes | [60] |
3-hexylthiophene (3HT) | Poly(3-hexylthiophene)-graft-polypropylene (P3HT-g-PP) | Grafting of PS on the surface of PP, followed by polymerization using FeCl3 in hexane | Chemical | Not mentioned | [61] |
3-hexylthiophene (3HT) | Poly(3-hexylthiophene)-graft-polypropylene (P3HT-g-PP) | Grafting of PEPT on the surface of PP, followed by polymerization using FeCl3 in hexane | Chemical | Not mentioned | [62] |
3,4-ethylenedioxythiophene (EDOT) | Polypropylene-graft-poly(acrylic acid)/poly(3,4-ethylenedioxythiophene) (PP-g-PAA/PEDOT) | Photo- induced graft polymerization of AA from PP fiber surfaces, followed by polymerization using FeCl3 in ethanol | Chemical | Gas sensing | [63] |
3-hexylthiophene (3HT) | Poly(3-hexylthiophene) (P3HT) | Ultrasound treatment of FeCl3/hexane mixture, followed by introduction of 3HT and magnetic stirring | Chemical | Not mentioned | [64] |
3,4-ethylenedioxythiophene-methanol (EDOT-HPG) | Hyperbranched polyglycerol-grafted-poly(3,4-ethylenedioxythiophene) (PEDOT-g-HPG) | Anionic ring opening reaction on glycidol on the PEDOT-MeoH, followed by deposition of EDOT-HPG on a bare GCE electrode from an aqueous solution containing 100 mM LiClO4 and 60 mM EDOT-HPG | Electrochemical | Protein detection in complex biological media | [68] |
3,3-bis(cyclohexylmethyl)-3,4-dihydro-2H-thieno [3,4-b][1,4] dioxepin (ProDOT-CycHex2) | Poly(3,3-Bis(cyclohexylmethyl)-3,4-Dihydro-2H-Thieno [3,4-b][1,4] Dioxepin) (P22ProDOT-CycHex2) | electrolytic solution of 0.1 M tetrabutylammonium hexaflourophosphate (TBAH) dissolved in a mixture of acetonitrile (ACN) and dichloromethane (DCM) | Electrochemical | Candidate for electrochromic devices | [69] |
5-(2-ethylhexyl)-1,3-di(thiophen-2-yl)-4H-thieno [3,4-c] pyrrole-4,6(5H)-dione (TTPT) | Poly(5-(2-ethylhexyl)-1,3-di(thiophen-2-yl)-4H-thieno [3,4-c] pyrrole-4,6(5H)-dione) (TTPT) | surface of a platinum electrode in an electrolytic solution of 0.1 M TBAH in a solvent mixture of ACN and DCM | Electrochemical | Candidate for Optoelectronic devices | [70] |
Pyrrole (Py) | G2poly(propylene imine)-co-polypyrrole star copolymer (G2PPI-co-PPY) | Surface of a platium electrode in electrolytic aqueous solution n of 0.1 M LiClO4 containing pyrrole monomer and pyrrole-functionalized dendrimer | Electrochemical | Not mentioned | [71] |
3,4-ethylenedioxythiophene (EDOT) | G1Poly(propylene thiophenoimine)-co-polythiophene (G1PPT-co-PEDOT) | Surface of gold (Au) electrode in an aqueous electrolytic solution consisting 0.1 M LiClO4 and sodium dodecyl sulphate | Electrochemical | aptamer biosensor | [72] |
3-hexylthiophene (3HT) | G3Poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) | Surface of Au electrode in an electrolytic solution of 0.1 M Bu4NClO4 dissolved in ACN containing 3HT monomer | Electrochemical | Phenanthrene sensor | [73] |
Solar Cell Hybrid Heterojunction Architecture | Jsc (mA/cm2) | Voc (mV) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|
ITO/PEDOT:PSS-Go/SiNWs/(n) c-Si/Ag/Ti | 31.00 | 518 | 59.6 | 9.57 | [140] |
Ag/PEDOT:PSS-DMSO/(i) a-Si:H/(n) c-Si/(i) a-Si:H/(n+) a-Si:H/a-SiC:H/Ti/Al | 30.97 | 600 | 59.4 | 11.04 | [141] |
ITO/PEDOT:PSS/SiNHs/(n) c-Si/n+ layer/Ti/Ag | 36.81 | 492 | 66.3 | 12 | [142] |
Ag-grid/PEDOT:PSS/(n) c-Si/(i) a-Si:H/(n) a-Si:H/Al | 36.5 | 634 | 70 | 16.2 | [143] |
Ag/PEDOT:PSS-Gr/(n) c-Si/Al | 26.64 | 530 | 64 | 9.05 | [145] |
ZnS/Ag/MoO3/PEDOT:PSS/n-SiNCs/Al | 24.21 | 400 | 53 | 5.12 | [146] |
Cu-grid/P3HT/(n) SiNPs/In/Ga | 37.6 | 457 | 54 | 9.2 | [147] |
Ti/Al-grids/Au/MoO3/P3HT/CH3-Monolayer/poly-Si/SiO2+SiN3N4+SiO2/Glass | 24.3 | 552 | 49.8 | 6.6 | [153] |
Al/SiNx/Al2O3/n+-FSF/(n) c-Si/SiOx/PEDOT:PSS/Ag | 39.7 | 653 | 67.2 | 17.4 | [154] |
ITO/(n) a-Si:H/(i) a-Si:H/(p) c-Si/PEDOT:PSS/Ag | 32 | 688 | 74.3 | 16.2 | [155] |
Ag-grid/PEDOT:PSS/SiO2/(n) c-Si/(i) a-Si:H/(n+) a-Si:H/ITO/Ti/Ag | 31.9 | 663 | 70 | 14.8 | [158] |
Ag-grid/PEDOT:PSS-5wt% DMSO/n-SiNWs/Al | 30.1 | 569 | 55 | 9.3 | [159] |
Ag-grid/PEDOT:PSS-6wt% ethylene glycol/n-Si/rubrene:DMSO/Ag | 28 | 609 | 69 | 11.9 | [160] |
Ag-grid/PEDOT:PSS/Dopamine@graphene/n-Si/PC61BM/Al | 32.64 | 623 | 64.6 | 13.15 | [161] |
Semi-transparent Au/P30T/SiOx/(n) c-Si/(i) a-Si:H/(n+) a-Si:H/metal | - | 500 | - | 9.6 | [135] |
Ag-grid/PEDOT:PSS-5wt% DMSO-0.1wt% Tritocn X 100/n-SiNWs/Al | 27.32 | 598 | 75.7 | 12.32 | [162] |
Glass/SiNx/(n) mc-Si/Al2O3/PEDOT:PSS/Ag | 25.4 | 604 | 67.4 | 10.3 | [163] |
Ag-grid/PEDOT:PSS-7% EG/n-Si/Ag | 15.7 | 598 | 58 | 5.1 | [164] |
Organic Solar Cell Architecture | Jsc (mA/cm2) | Voc (mV) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|
ITO/PEDOT:PSS/PM6:Y6:PDINO/Al | 25.3 | 830 | 74.8 | 15.7 | [179] |
ITO/PEDOT:PSS/PTB7:PC71BM/Ca/Ag | 16.32 | 760 | 59.6 | 7.32 | [180] |
ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al | 10.3 | 850 | 75 | 6.6 | [181] |
ITO/CPE-PCPDT-K/P3HT:PCBM/Al | 7.88 | 610 | 63 | 3.11 | [193] |
ITO/PFTSe/PTB7:PC71BM/PFN/Al | 14.4 | 677 | 69 | 7.2 | [194] |
ITO/PCPDffPhSO3K/PTB7-Th:PC71BM/Al | 17.88 | 782 | 65.7 | 9.4 | [195] |
ITO/PCP-H/J52-2F:IT-M/PFN-Br/Al | 18.4 | 960 | 73 | 12.8 | [196] |
ITO/PFS/PBDT-T:IT-M/PFN-Br/Al | 17.2 | 921 | 70 | 11 | [197] |
ITO/PCP-Na/PBDT-TSI:PC71BM/Mg/Al | 17.46 | 803 | 70.6 | 9.89 | [198] |
ITO/PCP-3B/PBDT-T:IT-M/NDI-n/Al | 15.5 | 910 | 68 | 9.67 | [199] |
ITO/PEDOT:PSS/PTB7-Th:PC71BM/ZnO/CPEPh-Na/PTB7-Th:PC71BM/AL | 11.1 | 1540 | 66 | 11.3 | [200] |
ITO/PFS/PBDT-TSI:PC71BM/Mg/Al | 18.2 | 794 | 66.6 | 9.60 | [201] |
ITO/RG1200/P3HT:PCBM/Ca/Al | 8.1 | 580 | 60.3 | 2.82 | [202] |
ITO/p-PFP-HD/PTB7-Th:PC71BM/PFN/Al | 16.3 | 780 | 77 | 9.03 | [203] |
ITO/p-PFP-O/PTB7-Th:PC71BM/PFN/Al | 16.6 | 780 | 70 | 9.2 | [204] |
ITO/PEDOT-S/P3TI:PC71BM/LiF/Al | 12.89 | 690 | 58 | 5.12 | [205] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mdluli, S.B.; Ramoroka, M.E.; Yussuf, S.T.; Modibane, K.D.; John-Denk, V.S.; Iwuoha, E.I. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers 2022, 14, 716. https://doi.org/10.3390/polym14040716
Mdluli SB, Ramoroka ME, Yussuf ST, Modibane KD, John-Denk VS, Iwuoha EI. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers. 2022; 14(4):716. https://doi.org/10.3390/polym14040716
Chicago/Turabian StyleMdluli, Siyabonga B., Morongwa E. Ramoroka, Sodiq T. Yussuf, Kwena D. Modibane, Vivian S. John-Denk, and Emmanuel I. Iwuoha. 2022. "π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells" Polymers 14, no. 4: 716. https://doi.org/10.3390/polym14040716
APA StyleMdluli, S. B., Ramoroka, M. E., Yussuf, S. T., Modibane, K. D., John-Denk, V. S., & Iwuoha, E. I. (2022). π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers, 14(4), 716. https://doi.org/10.3390/polym14040716