Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thin Films-Deposition and Thickness Measurements
2.3. Measurements Techniques
2.3.1. UV-Vis-NIR Optical Investigations
2.3.2. X-Ray Diffraction Studies
2.4. Photovoltaic Cells—Preparation and Characterization
3. Results and Discussion
3.1. Optical Properties
3.1.1. Iodine-Doped P3HT Thin Films
- (I)
- In the range 20–60 °C, the Urbach energy decreased and, simultaneously, the values of energy gap and exciton bandwidth increased. Annealing of iodine-doped P3HT films led to the releasing process of dopant atoms, connected with the disappearance of localized defect states within the energy gap (the lower Urbach energy) and the extinction of polaron bands and vibronic structure (see Figure 4), which results in the worse conjugation and higher values of energy gap and exciton bandwidth.
- (II)
- Above 60 °C, during annealing up to 210 °C, the energy gap turned out to be almost constant, both for 5% (EG ≅ 1.84 eV) and for 10% (EG ≅ 1.82 eV) iodine-doped P3HT films, while the Urbach energy and exciton bandwidth slightly increased (Figure 5). Within this range of temperature, such behavior was similar to that for neat P3HT films [25], where the linear dependence of EU on temperature was connected with the presence of flexible, hexyl side chains, while the almost constant value of EG during heating confirmed unchanging conjugation of polymer main chains.
3.1.2. Iodine-Doped P3HT:PCBM Blends Thin Films
- (I)
- The first region, from 20 to 60 °C, was connected with the gradual iodine escape process and, simultaneously, with the increase in P3HT order. For 5% iodine, the blend predominated the polymer ordering (decrease in the Urbach energy) while, for 10% content of iodine, these two processes were seen to be in equilibrium (almost constant EU). Since the polymer ordering is connected with an increase in P3HT crystallinity, such differences might be explained by the higher crystallinity of 10% mol. doped thin film at the beginning of annealing.
- (II)
- The stage within the temperature range of 60–140 °C was related to the thermally- induced movements of flexible side chains of P3HT, while the conjugation in the main polymer chain was almost unchanged because the values of energy gaps within this stage were approximately on the same level. We could observe the slight increase in the Urbach energy and exciton bandwidth, together with the energy gap of about 1.63 eV for 5% and 1.68 eV for 10% iodine-doped blends films.
- (III)
- Above 140 °C, the rapid increase in the Urbach energy and decrease in the energy gap was due to the phase separation process (which probably could have started above the PCBM glass transition temperature Tg = 124 °C [41]) and the formation of PCBM clusters, which have introduced the permanent defects.
3.2. X-Ray Diffraction Investigations
3.2.1. Iodine-Doped P3HT Thin Films
3.2.2. Iodine-Doped P3HT:PCBM Blends Thin Films
3.3. Photovoltaic Response of BHJ Devices
3.3.1. Photo-Active Impedance Spectroscopy (IS) Investigations
3.3.2. J-V Characteristics
- -
- Influence of iodine content
- -
- Influence of the thermal treatment
4. Summary and Conclusions
- -
- for the iodine-doped P3HT films, the temperature range of iodine escape (up to 60 °C). Above this temperature, the energy gap turned out to be almost constant, both for 5% (EG ≅ 1.84 eV) and for 10% (EG ≅ 1.82 eV) of iodine content, while the Urbach energy and exciton bandwidth slightly increased. These changes were connected with the presence of flexible side chains, while the almost constant value of EG confirmed unchanging conjugation in polymer main chains.
- -
- for iodine-doped blends films, three different stages: (i) up to 60 °C: the gradual iodine escape process and simultaneously the increase in P3HTcrystallinity; (ii) 60–140 °C: changes related to the thermally inducted movements of the flexible side chains of P3HT and the initiation of phase separation; (iii) above 140 °C: the gradual blend degradation, due to the formation of PCBM clusters, which introduced permanent defects.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klimov, E.; Li, W.; Yang, X.; Hoffmann, G.G.; Loos, J. Scanning Near-Field and Confocal Raman Microscopic Investigation of P3HT−PCBM Systems for Solar Cell Applications. Macromolecules 2006, 39, 4493–4496. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Lü, L.F.; Ning, Y.; Lu, Y.Z.; Lu, Q.P.; Zhang, C.M.; Fang, Y.; Tang, A.W.; Hu, Y.F.; Lou, Z.D.; et al. Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction. Chinese Phys. B 2014, 23, 118802. [Google Scholar] [CrossRef]
- Street, R.A.; Hawks, S.; Khlyabich, P.P.; Li, G.; Schwartz, B.; Thompson, B.C.; Yang, Y. Electronic Structure and Transition Energies in Polymer–Fullerene Bulk Heterojunctions. J. Phys. Chem. C 2014, 118, 21873–21883. [Google Scholar] [CrossRef] [Green Version]
- Kadem, B.; Hassan, A.; Cranton, W. Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. Mater. Electron. 2016, 27, 7038–7048. [Google Scholar] [CrossRef]
- Lin, Y.; Firdaus, Y.; Isikgor, F.H.; Nugraha, M.I.; Yengel, E.; Harrison, G.T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; et al. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 2020, 5, 2935–2944. [Google Scholar] [CrossRef]
- Wang, T.; Pearson, A.J.; Lidzey, D.G.; Jones, R.A.L. Evolution of structure, optoelectronic properties, and device performance of polythiophene:fullerene solar cells during thermal annealing. Adv. Funct. Mater. 2011, 21, 1383–1390. [Google Scholar] [CrossRef]
- Lee, R.H.; Yang, L.C.; Wu, J.Y.; Jeng, R.J. Synthesis of di(ethylene glycol)-functionalized diketopyrrolopyrrole derivative-based side chain-conjugated polymers for bulk heterojunction solar cells. RSC Adv. 2017, 7, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Liu, B.T.; Lee, R.H. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells. Express Polym. Lett. 2017, 11, 910–923. [Google Scholar] [CrossRef]
- Motaung, D.E.; Malgas, G.F.; Nkosi, S.S.; Mhlongo, G.H.; Mwakikunga, B.W.; Malwela, T.; Arendse, C.J.; Muller, T.F.G.; Cummings, F.R. Comparative study: The effect of annealing conditions on the properties of P3HT:PCBM blends. J. Mater. Sci. 2013, 48, 1763–1778. [Google Scholar] [CrossRef]
- Kim, Y.; Choulis, S.A.; Nelson, J.; Bradley, D.D.C.; Cook, S.; Durrant, J.R. Composition and annealing effects in polythiophene/fullerene solar cells. J. Mater. Sci. 2005, 40, 1371–1376. [Google Scholar] [CrossRef]
- Kim, H.; So, W.W.; Moon, S.J. The importance of post-annealing process in the device performance of poly(3-hexylthiophene): Methanofullerene polymer solar cell. Sol. Energy Mater. Sol. Cells 2007, 91, 581–587. [Google Scholar] [CrossRef]
- Zhokhavets, U.; Erb, T.; Gobsch, G.; Al-Ibrahim, M.; Ambacher, O. Relation between absorption and crystallinity of poly(3-hexylthiophene)/ fullerene films for plastic solar cells. Chem. Phys. Lett. 2006, 418, 347–350. [Google Scholar] [CrossRef]
- Lee, W.H.; Chuang, S.Y.; Chen, H.L.; Su, W.F.; Lin, C.H. Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode. In Thin Solid Films; Elsevier: Amsterdam, The Netherlands, 2010; Volume 518, pp. 7450–7454. [Google Scholar]
- Watts, B.; Belcher, W.J.; Thomsen, L.; Ade, H.; Dastoor, P.C. A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films. Macromolecules 2009, 42, 8392–8397. [Google Scholar] [CrossRef]
- Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P.G.; Kim, Y.; Anthopoulos, T.D.; Stavrinou, P.N.; Bradley, D.D.C.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat. Mater. 2008, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [Google Scholar] [CrossRef]
- Chen, F.C.; Ko, C.J.; Wu, J.L.; Chen, W.C. Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications. Sol. Energy Mater. Sol. Cells 2010, 94, 2426–2430. [Google Scholar] [CrossRef]
- Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868. [Google Scholar] [CrossRef]
- Sasaki, K.; Yamanari, T.; Ohashi, N.; Ogo, H.; Yoshida, Y.; Ueda, Y. Elucidation of formation mechanism of bulk heterojunction active layer by real-time uv-visible absorption and grazing-incidence wide-angle X-ray scattering. Appl. Phys. Express 2013, 6, 4–7. [Google Scholar] [CrossRef]
- Zhuo, Z.; Zhang, F.; Wang, J.; Wang, J.; Xu, X.; Xu, Z.; Wang, Y.; Tang, W. Efficiency improvement of polymer solar cells by iodine doping. Solid. State. Electron. 2011, 63, 83–88. [Google Scholar] [CrossRef]
- Jarząbek, B.; Hajduk, B.; Jurusik, J.; Domański, M. In situ optical studies of thermal stability of iodine-doped polyazomethine thin films. Polym. Test. 2017, 59, 230–236. [Google Scholar] [CrossRef]
- Jarzabek, B.; Weszka, J.; Hajduk, B.; Jurusik, J.; Domanski, M.; Cisowski, J. A study of optical properties and annealing effect on the absorption edge of pristine- and iodine-doped polyazomethine thin films. Synth. Met. 2011, 161, 969–975. [Google Scholar] [CrossRef]
- Iwan, A.; Janeczek, H.; Jarzabek, B.; Domanski, M.; Rannou, P. Characterization, optical and thermal properties of new azomethines based on heptadecafluoroundecyloxy benzaldehyde. Liq. Cryst. 2009, 36, 873–883. [Google Scholar] [CrossRef]
- Schab-Balcerzak, E.; Siwy, M.; Jarzabek, B.; Kozanecka-Szmigiel, A.; Switkowski, K.; Pura, B. Post and prepolymerization strategies to develop novel photochromic poly(esterimide)s. J. Appl. Polym. Sci. 2011, 120, 631–643. [Google Scholar] [CrossRef]
- Jarząbek, B.; Nitschke, P.; Hajduk, B.; Domański, M.; Bednarski, H. In situ thermo-optical studies of polymer:fullerene blend films. Polym. Test. 2020, 88, 106573. [Google Scholar] [CrossRef]
- Jarzabek, B.; Schab-Balcerzak, E.; Chamenko, T.; Sek, D.; Cisowski, J.; Volozhin, A. Optical properties of new aliphatic-aromatic co-polyimides. J. Non. Cryst. Solids 2002, 299–302, 1057–1061. [Google Scholar] [CrossRef]
- Schuettfort, T.; Thomsen, L.; McNeill, C.R. Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer. J. Am. Chem. Soc. 2013, 135, 1092–1101. [Google Scholar] [CrossRef]
- Zajaczkowski, W.; Nanajunda, S.K.; Eichen, Y.; Pisula, W. Influence of alkyl substitution on the supramolecular organization of thiophene- and dioxine-based oligomers. RSC Adv. 2017, 7, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Baghgar, M.; Labastide, J.; Bokel, F.; Dujovne, I.; McKenna, A.; Barnes, A.M.; Pentzer, E.; Emrick, T.; Hayward, R.; Barnes, M.D. Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. J. Phys. Chem. Lett. 2012, 3, 1674–1679. [Google Scholar] [CrossRef]
- Jones, R.N.; Shimokoshi, K. Some Observations on the Resolution Enhancement of Spectral Data by the Method of Self-Deconvolution. Appl. Spectrosc. 1983, 37, 59–67. [Google Scholar] [CrossRef]
- Spano, F.C.; Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500. [Google Scholar] [CrossRef]
- Clark, J.; Chang, J.F.; Spano, F.C.; Friend, R.H.; Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 2007–2010. [Google Scholar] [CrossRef]
- Clark, J.; Silva, C.; Friend, R.H.; Spano, F.C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 2007, 98, 206406. [Google Scholar] [CrossRef] [Green Version]
- Cody, G.D. Chapter 2 The Optical Absorption Edge of a-Si: H. Semicond. Semimet. 1984, 21, 11–82. [Google Scholar] [CrossRef]
- Jarzabek, B.; Weszka, J.; Domański, M.; Jurusik, J.; Cisowski, J. Optical studies of aromatic polyazomethine thin films. J. Non. Cryst. Solids 2008, 354, 856–862. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non. Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Jarząbek, B.; Wójtowicz, M.; Wolińska-Grabczyk, A. Optical Studies of Poly(hydroxy imide) to Polybenzoxazole Thermal Rearrangement. Macromol. Chem. Phys. 2015, 216, 2377–2385. [Google Scholar] [CrossRef]
- Jarząbek, B.; Kaczmarczyk, B.; Jurusik, J.; Siwy, M.; Weszka, J. Optical properties of thin films of polyazomethine with flexible side chains. J. Non. Cryst. Solids 2013, 375, 13–18. [Google Scholar] [CrossRef]
- Nitschke, P.; Jarząbek, B.; Wanic, A.; Domański, M.; Hajduk, B.; Janeczek, H.; Kaczmarczyk, B.; Musioł, M.; Kawalec, M. Effect of chemical structure and deposition method on optical properties of polyazomethines with alkyloxy side groups. Synth. Met. 2017, 232, 171–180. [Google Scholar] [CrossRef]
- Karagiannidis, P.G.; Georgiou, D.; Pitsalidis, C.; Laskarakis, A.; Logothetidis, S. Evolution of vertical phase separation in P3HT:PCBM thin films induced by thermal annealing. Mater. Chem. Phys. 2011, 129, 1207–1213. [Google Scholar] [CrossRef]
- Agostinelli, T.; Lilliu, S.; Labram, J.G.; Campoy-Quiles, M.; Hampton, M.; Pires, E.; Rawle, J.; Bikondoa, O.; Bradley, D.D.C.; Anthopoulos, T.D.; et al. Real-time investigation of crystallization and phase-segregation dynamics in P3HT:PCBM solar cells during thermal annealing. Adv. Funct. Mater. 2011, 21, 1701–1708. [Google Scholar] [CrossRef]
- Tang, M.; Zhu, S.; Liu, Z.; Jiang, C.; Wu, Y.; Li, H.; Wang, B.; Wang, E.; Ma, J.; Wang, C. Tailoring π-Conjugated Systems: From π-π Stacking to High-Rate-Performance Organic Cathodes. Chem 2018, 4, 2600–2614. [Google Scholar] [CrossRef] [Green Version]
- Rivnay, J.; Mannsfeld, S.C.B.; Miller, C.E.; Salleo, A.; Toney, M.F. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chem. Rev. 2012, 112, 5488–5519. [Google Scholar] [CrossRef] [PubMed]
- Romero, B.; Del Pozo, G.; Arredondo, B.; Reinhardt, J.P.; Sessler, M.; Wurfel, U. Circuital model validation for s-shaped organic solar cells by means of impedance spectroscopy. IEEE J. Photovolt. 2015, 5, 234–237. [Google Scholar] [CrossRef]
- Perrier, G.; De Bettignies, R.; Berson, S.; Lemaître, N.; Guillerez, S. Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 210–216. [Google Scholar] [CrossRef]
- Arredondo, B.; Romero, B.; Del Pozo, G.; Sessler, M.; Veit, C.; Würfel, U. Impedance spectroscopy analysis of small molecule solution processed organic solar cell. Sol. Energy Mater. Sol. Cells 2014, 128, 351–356. [Google Scholar] [CrossRef]
- Knipper, M.; Parisi, J.; Coakley, K.; Waldauf, C.; Brabec, C.J.; Dyakonov, V. Impedance spectroscopy on polymer-fullerene solar cells. Zeitschrift fur Naturforsch. Sect. A J. Phys. Sci. 2007, 62, 490–494. [Google Scholar] [CrossRef]
- Reisdorffer, F.; Haas, O.; Le Rendu, P.; Nguyen, T.P. Co-solvent effects on the morphology of P3HT:PCBM thin films. Synth. Met. 2012, 161, 2544–2548. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Melianas, A.; Wu, Y.; Kroon, R.; Li, W.; Ma, W.; Andersson, M.R.; Ma, Z.; Cai, W.; et al. Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. J. Mater. Chem. A 2018, 6, 12574–12581. [Google Scholar] [CrossRef]
- Kronemeijer, A.J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.; Sirringhaus, H. A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic. Adv. Mater. 2012, 24, 1558–1565. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B 2010, 114, 7452–7460. [Google Scholar] [CrossRef]
- Privitera, A.; Righetto, M.; De Bastiani, M.; Carraro, F.; Rancan, M.; Armelao, L.; Granozzi, G.; Bozio, R.; Franco, L.; Carraro,F. Hybrid Organic/Inorganic Perovskite−Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties. J. Phys. Chem. Lett. 2017, 8, 5981–5986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, J.R. Impedance Spectroscopy; Pergamon Press Ltd.: London, UK, 1992; Volume 20, ISBN 9780471831228. [Google Scholar]
Heat-Treatment | Neat P3HT:PCBM | P3HT:PCBM + 5% I2 | P3HT:PCBM + 10% I2 |
---|---|---|---|
non-annealed | 36% | 37% | 39% |
annealed at 100 °C | 48% | 49% | 51% |
annealed at 210 °C | 46% | 46% | 49% |
Layer | VOC [mV] | JSC [mA/cm2] | FF | PCE [%] | Rs [Ω] | Rsh [kΩ] |
---|---|---|---|---|---|---|
neat | 465.2 ± 21.1 | 9.94 ± 0.91 | 0.48 ± 0.01 | 2.24 ± 0.29 | 354.89 ± 39.55 | 5.18 ± 0.75 |
5% I2 | 394.2 ± 4.4 | 12.95 ± 0.59 | 0.46 ± 0.02 | 2.41 ± 0.19 | 240.10 ± 33.59 | 3.87 ± 0.78 |
10% I2 | 405.1 ± 6.1 | 14.18 ± 0.59 | 0.44 ± 0.01 | 2.61 ± 0.13 | 246.69 ± 26.41 | 4.24 ± 0.88 |
Layer (Blend) | VOC [mV] | JSC [mA/cm2] | FF | PCE [%] | Rs [Ω] | Rsh [kΩ] |
---|---|---|---|---|---|---|
net 100 °C | 376.26 ± 3.7 | 11.14 ± 0.32 | 0.48 ± 0.01 | 2.06 ± 0.06 | 248.18 ± 6.59 | 6.49 ± 0.82 |
+10% I2 | 281.1 ± 12.3 | 7.68 ± 0.43 | 0.30 ± 0.01 | 0.66 ± 0.07 | 591.33 ± 24.91 | 2.62 ± 0.50 |
+10% I2-40 °C | 380.0 ±8.0 | 8.80 ± 0.56 | 0.36 ± 0.01 | 1.24 ± 0.09 | 509.81 ± 26.60 | 2.61 ± 0.42 |
+10% I2-100 °C | 430.7 ± 7.0 | 11.10 ± 0.53 | 0.48 ± 0.01 | 2.35 ± 0.13 | 271.03 ± 6.95 | 5.89 ± 0.25 |
+10% I2-180 °C | 348.1 ± 9.2 | 7.83 ± 0.43 | 0.46 ± 0.01 | 1.28 ± 0.11 | 304.95 ± 15.76 | 3.97 ± 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarząbek, B.; Nitschke, P.; Godzierz, M.; Palewicz, M.; Piasecki, T.; Gotszalk, T.P. Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers 2022, 14, 858. https://doi.org/10.3390/polym14050858
Jarząbek B, Nitschke P, Godzierz M, Palewicz M, Piasecki T, Gotszalk TP. Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers. 2022; 14(5):858. https://doi.org/10.3390/polym14050858
Chicago/Turabian StyleJarząbek, Bożena, Paweł Nitschke, Marcin Godzierz, Marcin Palewicz, Tomasz Piasecki, and Teodor Paweł Gotszalk. 2022. "Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures" Polymers 14, no. 5: 858. https://doi.org/10.3390/polym14050858
APA StyleJarząbek, B., Nitschke, P., Godzierz, M., Palewicz, M., Piasecki, T., & Gotszalk, T. P. (2022). Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers, 14(5), 858. https://doi.org/10.3390/polym14050858