Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Biofilm cultivation;
- Biofilm removal techniques;
- Evaluation of biofilm removal.
3.1. Biofilm Cultivation
3.1.1. Monospecies Biofilm
3.1.2. Multispecies Biofilm
3.1.3. Biofilm Mimicking
3.1.4. Substrate and Period of Incubation
3.2. Biofilm Removal Techniques
3.2.1. Sonic Devices
3.2.2. Ultrasonic Devices
3.2.3. Er:Yag Laser Group
Er:Yag Laser
Er,Cr:YSGG Laser
PIPS
3.3. Evaluation of Biofilm Removal
3.3.1. CFU—Plate Counting
3.3.2. SEM
3.3.3. CLSM
3.3.4. Other Methods
4. Future Research
- standardize the pathogens’ growth conditions which can lead to more uniform viscoelastic properties of biofilms and their thicknesses;
- confirm biofilm formation by SEM/CLSM before initiating the treatment protocol;
- introduce root canals with complex morphology to surveys;
- align sonic, ultrasonic and laser parameters, respectively, and standardize them;
- besides CFU, introduce SEM and CLSM, which would allow a more detailed insight into the effectiveness of disinfection methods in the coronal, middle and apical parts of root canal, as well as the distinction between live and dead bacterial cells.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sjogren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J. 1997, 30, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int. Endod. J. 2001, 34, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, P.N. On the causes of persistent apical periodontitis: A review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.S.; Ferraz, C.C.; Zaia, A.A.; Almeida, J.F.; Gomes, B.P. Quantitative and qualitative analysis of microorganisms in root-filled teeth with persistent infection: Monitoring of the endodontic retreatment. Eur. J. Dent. 2013, 7, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Ionescu, A.; Josic, U.; Brambilla, E.; Breschi, L.; Mazzoni, A. Microbial contamination of resin composites inside their dispensers: An increased risk of cross-infection? J. Dent. 2022, 116, 103893. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Distel, J.W.; Hatton, J.F.; Gillespie, M.J. Biofilm formation in medicated root canals. J. Endod. 2002, 28, 689–693. [Google Scholar] [CrossRef]
- Kishen, A.; George, S.; Kumar, R. Enterococcus faecalis-mediated biomineralized biofilm formation on root canal dentine in vitro. J. Biomed. Mater. Res. Part A 2006, 77, 406–415. [Google Scholar] [CrossRef]
- Duggan, J.M.; Sedgley, C.M. Biofilm formation of oral and endodontic Enterococcus faecalis. J. Endod. 2007, 33, 815–818. [Google Scholar] [CrossRef]
- Neelakantan, P.; Romero, M.; Vera, J.; Daood, U.; Khan, A.U.; Yan, A.; Cheung, G.S.P. Biofilms in Endodontics-Current Status and Future Directions. Int. J. Mol. Sci. 2017, 18, 1748. [Google Scholar] [CrossRef]
- Ran, S.; He, Z.; Liang, J. Survival of Enterococcus faecalis during alkaline stress: Changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch. Oral Biol. 2013, 58, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Ziegler, A.; Higuchi, N.; Nakata, K.; Nakamura, H.; Ohno, N. Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics. Int. Endod. J. 2014, 47, 1012–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, P.N.; Henry, S.; Cano, V.; Vera, J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 99, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Corsentino, G.; Mazzitelli, C.; Mazzoni, A.; Ambu, E.; Perotto, C.; Franciosi, G.; Grandini, S. Sealing ability of two root-end filling materials at different retro-preparation lengths. J. Oral Sci. 2022, 64, 80–84. [Google Scholar] [CrossRef]
- Balic, M.; Lucic, R.; Mehadzic, K.; Bago, I.; Anic, I.; Jakovljevic, S.; Plecko, V. The efficacy of photon-initiated photoacoustic streaming and sonic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalis biofilm. Lasers Med. Sci. 2016, 31, 335–342. [Google Scholar] [CrossRef]
- Seet, A.N.; Zilm, P.S.; Gully, N.J.; Cathro, P.R. Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an Enterococcus faecalis biofilm grown in vitro. Aust. Endod. J. 2012, 38, 100–106. [Google Scholar] [CrossRef]
- Shen, Y.; Stojicic, S.; Qian, W.; Olsen, I.; Haapasalo, M. The synergistic antimicrobial effect by mechanical agitation and two chlorhexidine preparations on biofilm bacteria. J. Endod. 2010, 36, 100–104. [Google Scholar] [CrossRef]
- Alves, F.R.; Almeida, B.M.; Neves, M.A.; Moreno, J.O.; Rocas, I.N.; Siqueira, J.F., Jr. Disinfecting oval-shaped root canals: Effectiveness of different supplementary approaches. J. Endod. 2011, 37, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Bhuva, B.; Patel, S.; Wilson, R.; Niazi, S.; Beighton, D.; Mannocci, F. The effectiveness of passive ultrasonic irrigation on intraradicular Enterococcus faecalis biofilms in extracted single-rooted human teeth. Int. Endod. J. 2010, 43, 241–250. [Google Scholar] [CrossRef]
- Grundling, G.L.; Zechin, J.G.; Jardim, W.M.; de Oliveira, S.D.; de Figueiredo, J.A. Effect of ultrasonics on Enterococcus faecalis biofilm in a bovine tooth model. J. Endod. 2011, 37, 1128–1133. [Google Scholar] [CrossRef]
- Cherian, B.; Gehlot, P.M.; Manjunath, M.K. Comparison of the Antimicrobial Efficacy of Octenidine Dihydrochloride and Chlorhexidine with and Without Passive Ultrasonic Irrigation—An Invitro Study. J. Clin. Diagn. Res. JCDR 2016, 10, ZC71–ZC77. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.; Mathias, J.; Sagir, V.M.; Babu, B.P.; Chirayath, K.J.; Hameed, H. Bacterial Biofilm Removal Using Static and Passive Ultrasonic Irrigation. J. Int. Oral Health JIOH 2015, 7, 42–47. [Google Scholar] [PubMed]
- Schoop, U.; Moritz, A.; Kluger, W.; Patruta, S.; Goharkhay, K.; Sperr, W.; Wernisch, J.; Gattringer, R.; Mrass, P.; Georgopoulos, A. The Er:YAG laser in endodontics: Results of an in vitro study. Lasers Surg. Med. 2002, 30, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Guan, S.; Lu, H.; Zhao, C.; Chen, X.; Li, N.; Bai, Q.; Tian, Y.; Yu, Q. Evaluation of the bactericidal effect of Nd:YAG, Er:YAG, Er,Cr:YSGG laser radiation, and antimicrobial photodynamic therapy (aPDT) in experimentally infected root canals. Lasers Surg. Med. 2012, 44, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xiang, D.; He, W.; Qiu, J.; Han, B.; Yu, Q.; Tian, Y. Bactericidal Effect of Er:YAG Laser-Activated Sodium Hypochlorite Irrigation Against Biofilms of Enterococcus faecalis Isolate from Canal of Root-Filled Teeth with Periapical Lesions. Photomed. Laser Surg. 2017, 35, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Noiri, Y.; Katsumoto, T.; Azakami, H.; Ebisu, S. Effects of Er:YAG laser irradiation on biofilm-forming bacteria associated with endodontic pathogens in vitro. J. Endod. 2008, 34, 826–829. [Google Scholar] [CrossRef]
- Golob, B.S.; Olivi, G.; Vrabec, M.; El Feghali, R.; Parker, S.; Benedicenti, S. Efficacy of Photon-induced Photoacoustic Streaming in the Reduction of Enterococcus faecalis within the Root Canal: Different Settings and Different Sodium Hypochlorite Concentrations. J. Endod. 2017, 43, 1730–1735. [Google Scholar] [CrossRef]
- Olivi, G.; DiVito, E. Photoacoustic endodontics using PIPS™: Experimental background and clinical protocol. J. Laser Health Acad. 2012, 1. [Google Scholar]
- Ricucci, D.; Siqueira, J.F., Jr. Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod. 2010, 36, 1277–1288. [Google Scholar] [CrossRef]
- Al Shahrani, M.; DiVito, E.; Hughes, C.V.; Nathanson, D.; Huang, G.T. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: An in vitro study. Photomed. Laser Surg. 2014, 32, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Velmurugan, N.; Sumitha; Ballal, S. Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis) in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: An in vitro study. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2013, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Case, P.D.; Bird, P.S.; Kahler, W.A.; George, R.; Walsh, L.J. Treatment of root canal biofilms of Enterococcus faecalis with ozone gas and passive ultrasound activation. J. Endod. 2012, 38, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Christo, J.E.; Zilm, P.S.; Sullivan, T.; Cathro, P.R. Efficacy of low concentrations of sodium hypochlorite and low-powered Er,Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm. Int. Endod. J. 2016, 49, 279–286. [Google Scholar] [CrossRef]
- Nagahashi, T.; Yahata, Y.; Handa, K.; Nakano, M.; Suzuki, S.; Kakiuchi, Y.; Tanaka, T.; Kanehira, M.; Suresh Venkataiah, V.; Saito, M. Er:YAG laser-induced cavitation can activate irrigation for the removal of intraradicular biofilm. Sci. Rep. 2022, 12, 4897. [Google Scholar] [CrossRef] [PubMed]
- Kasic, S.; Knezovic, M.; Beader, N.; Gabric, D.; Malcic, A.I.; Baraba, A. Efficacy of Three Different Lasers on Eradication of Enterococcus faecalis and Candida albicans Biofilms in Root Canal System. Photomed. Laser Surg. 2017, 35, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Layton, G.; Wu, W.I.; Selvaganapathy, P.R.; Friedman, S.; Kishen, A. Fluid Dynamics and Biofilm Removal Generated by Syringe-delivered and 2 Ultrasonic-assisted Irrigation Methods: A Novel Experimental Approach. J. Endod. 2015, 41, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Maden, M.; Ertugrul, I.F.; Orhan, E.O.; Erik, C.E.; Yetis, C.C.; Tuncer, Y.; Kahriman, M. Enhancing antibacterial effect of sodium hypochlorite by low electric current-assisted sonic agitation. PLoS ONE 2017, 12, e0183895. [Google Scholar] [CrossRef] [Green Version]
- Meire, M.A.; Coenye, T.; Nelis, H.J.; De Moor, R.J. Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int. Endod. J. 2012, 45, 482–491. [Google Scholar] [CrossRef]
- Mohmmed, S.A.; Vianna, M.E.; Penny, M.R.; Hilton, S.T.; Mordan, N.; Knowles, J.C. Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of Enterococcus faecalis biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model. MicrobiologyOpen 2017, 6, e00455. [Google Scholar] [CrossRef] [Green Version]
- Neelakantan, P.; Cheng, C.Q.; Mohanraj, R.; Sriraman, P.; Subbarao, C.; Sharma, S. Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro. Int. Endod. J. 2015, 48, 602–610. [Google Scholar] [CrossRef]
- Pladisai, P.; Ampornaramveth, R.S.; Chivatxaranukul, P. Effectiveness of Different Disinfection Protocols on the Reduction of Bacteria in Enterococcus faecalis Biofilm in Teeth with Large Root Canals. J. Endod. 2016, 42, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Toljan, I.; Bago, I.; Juric; Anic, I. Eradication of Intracanal Enterococcus Faecalis Biofilm by Passive Ultrasonic Irrigation and RinsEndo System. Acta Stomatol. Croat. 2016, 50, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Ahmadi, P.; Chiniforush, N.; Sooratgar, A. Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis. Clin. Oral Investig. 2021, 25, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Hoedke, D.; Kaulika, N.; Dommisch, H.; Schlafer, S.; Shemesh, H.; Bitter, K. Reduction of dual-species biofilm after sonic- or ultrasonic-activated irrigation protocols: A laboratory study. Int. Endod. J. 2021, 54, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.J.; Kim, M.A.; Choi, Y.; Neelakantan, P.; Yu, M.K.; Min, K.S. A novel three-dimensionally printed model to assess biofilm removal by ultrasonically activated irrigation. Int. Endod. J. 2021, 54, 1871–1877. [Google Scholar] [CrossRef]
- Suer, K.; Ozkan, L.; Guvenir, M. Antimicrobial effects of sodium hypochlorite and Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Niger. J. Clin. Pract. 2020, 23, 1188–1193. [Google Scholar] [CrossRef]
- Pinheiro, E.T.; Anderson, M.J.; Gomes, B.P.; Drucker, D.B. Phenotypic and genotypic identification of enterococci isolated from canals of root-filled teeth with periapical lesions. Oral Microbiol. Immunol. 2006, 21, 137–144. [Google Scholar] [CrossRef]
- Tong, Z.; Ling, J.; Lin, Z.; Li, X.; Mu, Y. The effect of MTADN on 10 Enterococcus faecalis isolates and biofilm: An in vitro study. J. Endod. 2013, 39, 674–678. [Google Scholar] [CrossRef]
- Peters, O.A.; Bardsley, S.; Fong, J.; Pandher, G.; Divito, E. Disinfection of root canals with photon-initiated photoacoustic streaming. J. Endod. 2011, 37, 1008–1012. [Google Scholar] [CrossRef]
- De Meyer, S.; Meire, M.A.; Coenye, T.; De Moor, R.J. Effect of laser-activated irrigation on biofilms in artificial root canals. Int. Endod. J. 2017, 50, 472–479. [Google Scholar] [CrossRef]
- Niazi, S.; Clark, D.; Do, T.; Gilbert, S.; Foschi, F.; Mannocci, F.; Beighton, D. The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm. Int. Endod. J. 2014, 47, 756–768. [Google Scholar] [CrossRef]
- Macedo, R.G.; Robinson, J.P.; Verhaagen, B.; Walmsley, A.D.; Versluis, M.; Cooper, P.R.; van der Sluis, L.W. A novel methodology providing insights into removal of biofilm-mimicking hydrogel from lateral morphological features of the root canal during irrigation procedures. Int. Endod. J. 2014, 47, 1040–1051. [Google Scholar] [CrossRef]
- Bao, P.; Shen, Y.; Lin, J.; Haapasalo, M. In Vitro Efficacy of XP-endo Finisher with 2 Different Protocols on Biofilm Removal from Apical Root Canals. J. Endod. 2017, 43, 321–325. [Google Scholar] [CrossRef]
- Olivi, G.; DiVito, E.; Peters, O.; Kaitsas, V.; Angiero, F.; Signore, A.; Benedicenti, S. Disinfection efficacy of photon-induced photoacoustic streaming on root canals infected with Enterococcus faecalis: An ex vivo study. J. Am. Dent. Assoc. 2014, 145, 843–848. [Google Scholar] [CrossRef]
- Ordinola-Zapata, R.; Bramante, C.M.; Aprecio, R.M.; Handysides, R.; Jaramillo, D.E. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. Int. Endod. J. 2014, 47, 659–666. [Google Scholar] [CrossRef]
- Vacca Smith, A.M.; Bowen, W.H. In situ studies of pellicle formation on hydroxyapatite discs. Arch. Oral Biol. 2000, 45, 277–291. [Google Scholar] [CrossRef]
- Madhwani, T.; McBain, A.J. Bacteriological effects of a Lactobacillus reuteri probiotic on in vitro oral biofilms. Arch. Oral Biol. 2011, 56, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Mohmmed, S.A.; Vianna, M.E.; Penny, M.R.; Hilton, S.T.; Mordan, N.; Knowles, J.C. A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Josic, U.; Maravic, T.; Mazzitelli, C.; Del Bianco, F.; Mazzoni, A.; Breschi, L. The effect of chlorhexidine primer application on the clinical performance of composite restorations: A literature review. J. Esthet. Restor. Dent. 2021, 33, 69–77. [Google Scholar] [CrossRef]
- Halford, A.; Ohl, C.-D.; Azarpazhooh, A.; Basrani, B.; Friedman, S.; Kishen, A. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. J. Endod. 2012, 38, 1530–1534. [Google Scholar] [CrossRef]
- van der Sluis, L.W.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the literature. Int. Endod. J. 2007, 40, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.C.; Neuvald, L.; Barth, V., Jr.; de Figueiredo, J.A.P.; de Oliveira, S.D.; Scarparo, R.K.; Waltrick, S.B.; Rossi-Fedele, G. Antimicrobial efficacy of 0.5% peracetic acid and EDTA with passive ultrasonic or manual agitation in an Enterococcus faecalis biofilm model. Aust. Endod. J. 2019, 45, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Shen, Y.; de la Fuente-Nunez, C.; Haapasalo, M. In vitro evaluation by quantitative real-time PCR and culturing of the effectiveness of disinfection of multispecies biofilms in root canals by two irrigation systems. Clin. Oral Investig. 2019, 23, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, P.; Merlos, A.; Sierra, J.M.; Camps-Font, O.; Arnabat-Dominguez, J.; Vinas, M. Effectiveness of low concentration of sodium hypochlorite activated by Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Lasers Med. Sci. 2019, 34, 247–254. [Google Scholar] [CrossRef] [PubMed]
- DiVito, E.; Lloyd, A. ER:YAG laser for 3-dimensional debridement of canal systems: Use of photon-induced photoacoustic streaming. Dent. Today 2012, 31, 122, 124–127. [Google Scholar] [PubMed]
- Hage, W.; De Moor, R.J.G.; Hajj, D.; Sfeir, G.; Sarkis, D.K.; Zogheib, C. Impact of Different Irrigant Agitation Methods on Bacterial Elimination from Infected Root Canals. Dent. J. 2019, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swimberghe, R.C.D.; De Clercq, A.; De Moor, R.J.G.; Meire, M.A. Efficacy of sonically, ultrasonically and laser-activated irrigation in removing a biofilm-mimicking hydrogel from an isthmus model. Int. Endod. J. 2019, 52, 515–523. [Google Scholar] [CrossRef]
Author, Year | Microorganism | Period of Incubation (Days) | Substrate | Methodology Assessment |
---|---|---|---|---|
Noiri et al. (2008) | E. faecalis ATCC 19246 | 21 | HA disc | CFU, SEM |
Shen et al. (2010) | Subgingival plaque | 21 | HA disc | CLSM |
Bhuva et al. (2010) | E. faecalis OMGS 3202 | 3 | Human dentin | SEM |
Alves et al. (2011) | E. faecalis ATCC 29212 | 30 | Human dentin | CFU, PCR |
Peters et al. (2011) | Oral bacteria | 6–8 intraorally, 15 in vitro | Human dentin | CFU, histology |
Grundling et al. (2011) | E. faecalis ATCC 29212 | 50 | Animal teeth | SEM |
Meire et al. (2012) | E. faecalis ATCC 10541 | 1 | Human dentin | CFU |
Case et al. (2012) | E. faecalis ATCC 29212 | 12 | Human dentin | CFU |
Halford et al. (2012) | E. faecalis ATCC 29212 | 7 | Human dentin | CFU |
Cheng et al. (2012) | E. faecalis ATCC 4083 | 28 | Human dentin | CFU and SEM |
Seet et al. (2012) | E. faecalis ATCC 700802 | 28 | Human dentin | SEM |
Bhardway et al. (2014) | E. faecalis ATCC 29212 | 3 | Human dentin | SEM |
Niazi et al. (2014) | E. faecalis OMGS 3202, Propionibacterium acnes, Staphylococcus epidermidis, Actinomyces radicidentis, Streptococcus mitis | 14 | Hydroxyapatite discs | CFU, CLSM |
Ordinola-Zapata et al. (2014) | Oral biofilm | 3 days intraorally, 2 days in vitro | Animal dentin | SEM |
Macedo et al. (2014) | Biofilm mimicking with hydrogel | / | Solidifying polydimethylsiloxane | High-speed camera |
Al Shahrani et al. (2014) | E. faecalis ATCC 4083 | 21 | Human dentin | CFU, SEM |
Olivi et al. (2014) | E. faecalis vancomycin-resistant | 28 | Human dentin | SEM |
Nelaakantan et al. (2015) | E. faecalis ATCC 29212 | 21 | Human dentin | CFU, CLSM |
Layton et al. (2015) | E. faecalis ATCC 29212 | 21 | PEG-modified PDMS | crystal violet assay |
Chirsto et al. (2016) | E. faecalis ATCC 700802 | 28 | Human dentin | CFU |
Joy et al. (2016) | Biofilm mimicking with collagen | / | Human dentin | Digital images |
Balic et al. (2016) | E. faecalis ATCC 29212 | 15 | Human dentin | PCR, CFU |
Pladisai et al. (2016) | E. faecalis ATCC 29212 | 21 | Human dentin | CFU |
Mohmmed et al. (2016) | E. faecalis ATCC 19433 | 10 | Clear liquid photopolymer material | fluorescence microscope with high-resolution CCD camera |
Cherian et al. (2016) | E. faecalis ATCC 29212 | 7 | Human dentin | CFU, SEM |
De Meyer et al. (2017) | E. faecalis (strain ATCC 10541) Streptococcus mutans (strain LMG 14558) | 2 | Resin | CFU |
Toljan et al. (2017) | E. faecalis ATCC 29212 | 1 | Human dentin | CFU |
Bao et al. (2017) | Mixed biofilm | 28 | Human dentin | SEM |
Mohmmed et al. (2017) | E. faecalis ATCC 19433 | 10 | Clear liquid photopolymer material | SEM, CLSM, TEM |
Kasic et al. (2017) | E. faecalis Candida albicans | 7 | Human dentin | CFU |
Cheng et al. (2017) | E. faecalis (clinically isolated) | 28 | Human dentin | SEM |
Golob et al. (2017) | E. faecalis vancomycin-resistant | 28 | Human dentin | SEM |
Maden et al. (2017) | E. faecalis ATCC 29212 | 21 | Human dentin | CFU |
Betancourt et al. (2018) | E. faecalis ATCC 29212 | 1 | Glass | CFU and atomic force microscope |
Sasanakul et a. (2019) | E. faecalis ATCC 29212 | 21 | Human dentin | CFU |
Zhang et al. (2019) | Sub- and supragingival biofilm | 14 | Human dentin | Quantitative real-time PCR |
Hartmann et al. (2019) | E. faecalis ATCC 19433 | 26 | Human dentin | CFU |
Suer et al. (2020) | E. faecalis ATCC 29212 | 1 | Human dentin | SEM |
Hoedke et al. (2021) | E. faecalis ATCC 29212 and Streptococcus oralis ATCC 35037 | 5 | Human dentin | CFU |
Choi et al. (2021) | E. faecalis OG1RF ATCC 47077, Streptococcus mitis ATCC 49456 and Campylobacter rectus ATCC 33238 | 21 | Human dentin | CFU, CLSM, TEM |
Afkhami et al. (2021) | E. faecalis ATCC 29212 | 28 | Human dentin | CFU |
Author | Sonic Device | Irrigant | Mode of Agitation | Time of Agitation |
---|---|---|---|---|
Shen et al. (2010) | Endo Activator Advanced Endodontics, Santa Barbara, CA, USA | 2% chlorhexidine digluconate (CHX), CHX plus | Medium power | 1–3 min |
Halford et al. (2012) | Endo Activator Dentsply Tulsa Dental Specialties, Tulsa, OK, USA | Sterile water, 5.25% NaOCl, or microbubble emulsion | Full energy | 20 s |
Seet et al. (2012) | Endo Activator Dentsply (Maillefer, Ballaigues, Switzerland) | Saline, 4% NaOCl | Full energy | 60 s |
Balic et al. (2016) | Endo Activator Dentsply, Maillefer, Ballaigues, Switzerland | 2.5% NaOCl and QMiX solution | 10,000 cpm | 30 s |
Mohmmed et al. (2016) | Endo Activator Dentsply Tulsa Dental Specialities, Tulsa, OK, USA | 2.5% NaOCl | High power | 30 s |
Mohmmed et al. (2017) | Endo Activator Dentsply Tulsa Dental Specialities, Tulsa, OK, USA | 2.5% NaOCl | High power | 30 s |
Maden et al. (2017) | Endo Activator Dentsply Tulsa Dental Specialities, Tulsa, OK, USA | 5.25% NaOCl | 167 Hz | 60 s |
Swimberghe et al. (2019) | Eddy (VDW) and EA (Dentsply Sirona, Konstanz, Germany) | Water | 6000 Hz | 60 s |
Hoedke et al. (2021) | SONICflex, (KaVo, Warthausen, Germany) | Saline, 1% NaOCl | Intensity mode 3 | 60 s |
Author | Ultrasonic Device | Irrigant | Mode | Time of Agitation | Instrument |
---|---|---|---|---|---|
Shen et al. (2010) | E7 of Varios 350 LUX (Nakanishi Inc., Kanuma, Japan) | Saline, 2% CHX, CHX-plus | Medium power | 60–180 s | Ultrasonic tip |
Bhuva et al. (2010) | Piezon Master 400 (Electro Medical Systems SA, Nyon, Switzerland) | 1% NaOCl | ¼ of maximum power | 40 s | Size #15 ultrasonic file |
Alves et al. (2011) | Piezoelectric (Enac- Osada, Tokyo, Japan) | 2.5% NaOCl, 0.2% CHX | Not specified | 60 s | Size #15 K-file |
Peters et al. (2011) | EMS 600 ultrasonic (Nyon, Switzerland) | 6% NaOCl | 5/10 of maximum power | 30 s | Non-cutting insert |
Grundling et al. (2011) | Nac Plus ultrasonics (Adiel, Ribeirao Preto, SP, Brazil) | Distilled water, 2% NaOCl | Scale power 2 | Not specified | Size #40 K-file |
Case et al. (2012) | Ultrasonic scaler (Perioscan; Sirona, Bensheim, Germany) | Saline | 70 kHz and 200 mW/cm2 | 120 s | Size #15 K-file |
Halford et al. (2012) | P5 Newtron unit (Acteon Group, Norwich, UK) | Sterile water, 5.25% NaOCl, microbubble emulsion | Power setting 10 | 60 s | Size #10 K-file |
Bhardway et al. (2014) | Ultrasonic unit (Satelec, Merignac Cedex, France) | 1% NaOCl | ¼ of maximum power | 40 s | Size #15 ultrasonic file |
Ordinila-Zapata et al. (2014) | Satelec P5 suprasson ultrasonic unit (Suprasson P5; Satelec Acteon group, Acteon, Merignac, France) | 6% NaOCl | Power setting 4 | 60 s | Irrisafe file 20.00 (Acteon, Merignac, France) |
Niazi et al. (2014) | Ultrasonic unit (Piezon Master 400; Electro Medical Systems, Nyon, Switzerland) | Trypsin, Proteinase K, NaOCl, saline, CHX | ¼ of the maximum power | 20 s | 15 ultrasonic file (Endosonore File, Dentsply Maillefer) |
Macedo et al. (2014) | Ultrasonic device (Suprasson P-Max, Acteon Satelec, Acteon, Merignac, France) | Water and 8.7% NaOCl | Power setting ‘Yellow 5’ | 20 s | IrriSafe file (Acteon, Merignac, France) |
Layton et al. (2015) | 1. ultrasonic device (P5 Newtron unit; Satelec); 2. PiezoFlow device (Dentsply Tulsa Dental Specialties, Konstanz, Germany) | Sterile water | 1. power setting 10; 2. power setting 5 | 20 s | 1. non-cutting steel wire, 200 μm; 2. ultrasonic irrigation needle, 500 μm |
Nelaakantan et al. (2015) | EMS 600 ultrasonic unit (Nyon, Switzerland) | Saline, 6 and 3% NaOCl, 18% etidronic acid, 17% EDTA | Not specified | 30 s | Ultrasonic file |
Joy et al. (2015) | Not specified | 2.5% NaOCl | Not specified | Not specified | Size #15 K-file |
Pladisi et al. (2016) | Piezoelectric ultrasonic device (P5; Satelec Acteon, Merignac, France) | 2.5% NaOCl | Power setting 4 | 60 s | Irrisafe tip K20/21 (Acteon, Merignac, France) |
Toljan et al. (2016) | Ultrasonic device (Piezon Master 400; EMS, Nyon, Switzerland) | 3% NaOCl | Medium power | 30 s | Size #15 K-file |
Cherian et al. (2016) | Ultrasonic unit (Varios 750, NSK Nakanishi Inc., Tochigi, Japan.) | 2% CHX, 0.1% octenidine dihydrochloride | ¼ of maximum power | 40 s | Ultrasonic file size 15 |
Mohmmed et al. (2016) | Satelec P5 Newtron piezon unit (Acteon, Merignac, France) | 2.5% NaOCl | Power setting 7 | 30 s | Irrisafe instrument 20/02 (Acteon, Merignac, France) |
De Meyer et al. (2017) | Ultrasonic device (Suprasson Pmax Newtron, Satelec) | Sterile saline, 2.5% NaOCl | 50% power mode | 20 s | Irrisafe file size 20 (Acteon, Merignac, France) |
Bao et al. (2017) | Ultrasonic device (ProUltra, Dentsply Tulsa Dental, Konstanz, Germany) | 3% NaOCl | Power setting 3 | 60 s | U-file size 20 |
Mohmmed et al. (2017) | Satelec P5 Newtron piezon unit (Acteon, Merignac, France) | 2.5% NaOCl | Power setting 7 | 30 s | Irrisafe file size 20/02 (Acteon, Merignac, France) |
Betancourt et al. (2018) | Newtron P5 XS, Satelec (Acteon, Merignac, France) | Saline, 0.5% and 5% NaOCl | Medium power | 60 s | Stainless steel 25/00, 25 mm in length |
Hartmann et al. (2019) | D700 Dabi Atlante (Ribeirao Preto, SP, Brazil) | Saline, 17% EDTA, 0.5% peracetic acid | Not specified | 60 s | Ultrasonic files size 15 (Mani Inc., Utsunomiya Tochigi, Japan) |
Zhang et al. (2019) | ProUltra PiezoFlow Active Ultrasonic System | 3% NaOCl, 8% EDTA, sterile water | Not specified | 320 s | Not specified |
Swimberghe et al. (2019) | P5 Newton; Satelec (Acteon, Merignac, France) | Water | Power 7 | 60 s | Size 25 (Irrisafe; Satelec Acteon, Merignac, France) |
Hoedke et al. (2021) | Not specified | Saline, 1% NaOCl | 30% power | 60 s | Size 25 IRRI S file VDW |
Choi et al. (2021) | Satelec P5 Newtron XS ultrasonic unit (Acteon, Merignac, France) | Water, 1% NaOCl | Power 6 | 30 s | Irrisafe (Acteon, Merignac, France); CK (B&L Bio, Ansan, Korea); Endosonic Blue (Maruchi, Wonju, Korea) |
Author | Laser Type | Irrigant | Laser Tip | Laser Parameters (Wavelength, Power, Pulse Energy, Pulse Frequency, Pulse Duration) | Time | Position of the Tip |
---|---|---|---|---|---|---|
Noiri et al. (2008) | Er:YAG laser (Arwin; MORITA, Osaka, Japan) | No irrigant | Custom made tip, diameter 650 μm | 2940 nm not specified 20, 40, 80 mJ not specified | 10 s | 3 mm from the HA disc |
Meire et al. (2012) | Er:Yag laser (Fidelis; Fotona, Ljubljana, Slovenia) | 0.25% NaOCl | RO2 handpiece (Fotona) | 2940 nm not specified 50, 100 mJ 15 Hz not specified | 20 s | Directly over the dentin disc |
Cheng et al. (2012) | 1. Er:Yag laser (Fontona Lasers) 2. Er,Cr:YSGG laser (Biolase, Irvine, CA) | 1. 5.25% NaOCl, saline, distilled water 2. Not specified | 1. Optical fiber, 200 μm diameter 2. Optical fiber, 415 μm diameter | 1. 2.940 nm 0.3 W not specified 15 Hz not specified 2. 2.780 nm 1 W not specified 20 Hz not specified | 1. 20 s 2. 60 s | 1. Orifice of the root canal 2. 1 mm from the working length |
Seet et al. (2012) | Er,Cr:YSGG laser (WaterLase, Biolase Technology, Irvine, CA, USA) | Saline, 4% NaOCl | Radial firing tip (17 mm, 52°) | Not specified 0.25 W not specified 20 Hz not specified | 60 s | 4 mm into the canal, withdraw coronally |
Christo et al. (2016) | Er,Cr:YSGG laser (Waterlase, Biolase Technology, Irvine, CA, USA) | Saline, 0.5, 1 and 4% NaOCl | RFT 3 (diameter 415 μm, length 17 mm) (Endolase, Biolase Technology) | 2.780 nm 0.5 W 25 mJ 20 Hz 140 μs | 60 s | 5 mm apically from the orifice |
Kasic et al. (2017) | Er,Cr:YSGG laser (Waterlase, Biolase, Irvine, CA, USA) | Saline | RTF 2 (200 μm) | Not specified 1.25 W not specified 15 Hz 150 μs | Not specified | 5 mm apically from the coronal access |
Betancourt et al. (2018) | Er,Cr:YSGG laser (Waterlase iPlus BIOLASE technology, Irvine, CA, USA) | Saline, 0.5% and 5% NaOCl | RFT 2 tip (Endolase, BIOLASE Technology, Inc.; 200 μm in diameter, length 21 mm, calibration factor of >0.55) | 2.780 nm, 1 W, 100 mJ 10 Hz 140 μs | 60 s | Tip placed in the cylindric reservoir |
Suer et al. (2020) | Er,Cr:YSGG laser | 2.5% NaOCl | Fiber tip | Not specified 2 W/0.75 W Not specified 20 Hz | 40 s | Placed into the canal towards the apex |
Author | Laser Type | Irrigant | Laser Tip | Laser Parameters (Pulse Rate, Pulse Energy, Pulse Duration, Power) | Time | Position of the Laser Tip |
---|---|---|---|---|---|---|
Peters et al. (2011) | Er:Yag laser Fidelis; (Fotona, Ljubljana, Slovenia) | 3.6% NaOCl | 21-mm-long, 400-μm endodontic fiber | 10 Hz 50 mJ not specified not specified | 30 s | Coronal reservoir |
Olivi et al. (2014) | Er:Yag laser (LightWalker AT, Fotona, Ljubljana, Slovenia) | 5% NaOCl followed by 17% EDTA | 9-mm, 600-μm quartz tip | 15 Hz 20 mJ 50 μs 0.3 W | 90 s | Access cavity |
Ordinola-Zapata et al. (2014) | Er:Yag laser Fidelis; (Fotona, Ljubljana, Slovenia) | 6% NaOCl | 12-mm, 400-μm quartz tip | 15 Hz 20 mJ 50 μs 0.3 W | 60 s | Access cavity |
Al Shahrani et al. (2014) | Er:Yag laser (LightWalker AT, Fotona, Ljubljana, Slovenia) | 6% NaOCl, saline | 9-mm, 600-μm quartz tip | 15 Hz 20 mJ 50 μs 0.3 W | 90 s | Access cavity |
Neelakantan et al. (2015) | Er:Yag laser (Fidelis; Fotona, Ljubljana, Slovenia) | Saline, NaOCl-EDTA-NaOCl, NaOCl-EDTA, NaOCl-editronic acid | 21 mm long, 400 microns endodontic conical fiber tip | 10 Hz 50 mJ 50 ms not specified | 30 s | Coronal reservoir |
Balic et al. (2016) | Er:Yag laser (LightWalker AT, Fotona, Ljubljana, Slovenia) | 2.5% NaOCl, QMiX solution | 600-μm fiber tip | 15 Hz 20 mJ 50 μs not specified | 60 s | Access cavity |
Kasic et al. (2017) | Er:Yag laser (LightWalker AT, Fotona, Ljubljana, Slovenia) | Saline | 14-mm, 400 μm tapered tip | 15 Hz 20 mJ 50 μs 0.3 W | 40 s | Access cavity |
Cheng et al. (2017) | Er:Yag laser (Fotona, Ljubljana, Slovenia) | 0.5 and 5.25% NaOCl | PIPS tip (diameter 300 μm, Fotona) | 25 Hz 20 mJ 50 μs 0.5 W | 30 s | 1 mm below the orifice of the canals |
Golob et al. (2017) | 1. Er:Yag laser Fidelis; (Fotona, Ljubljana, Slovenia) 2. Er:Yag laser (LightWalker AT, Fotona, Ljubljana, Slovenia) | 1, 3, 5% NaOCl,EDTA, sterile water | PIPS tip (600/9) | 1. 15 Hz 20 mJ 50 μs not specified 2. 15 Hz 10 mJ 50 μs not specified | 30 s | Access cavity |
De Meyer et al. (2017) | Er:Yag laser (AT Fidelis, Fotona, Ljubljana, Slovenia) | 2.5% NaOCl, saline | 14 mm, 400 μ, fiber tip | 20 Hz 20 and 40 mJ, 50 μs not specified | 20 s | Canal entrance, root canal |
Swimberghe et al. (2019) | Er:Yag-laser (Lightwalker; Fotona, Ljubljana, Slovenia) | Water | PIPS 400/14 | 20 Hz 20 mJ 20 μs Not specified | 60 s | Canal entrance |
Hage et al. (2019) | Er:Yag-laser (Lightwalker; Fotona, Ljubljana, Slovenia) | Water | PIPS tip (9 mm long; 600 μm diameter) | 15 Hz 20 mJ 50 μs not specified | Not specified | Canal entrance |
Afkhami et al. (2021) | Er:Yag-laser (Lightwalker; Fotona, Ljubljana, Slovenia) | Suspension of AgNP, 5% NaOCl | PIPS tip | 15 Hz, 20 mJ 50 μs 0.3 W | 30 s | Pulp chamber |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Josic, U.; Mazzitelli, C.; Maravic, T.; Fidler, A.; Breschi, L.; Mazzoni, A. Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy. Polymers 2022, 14, 1334. https://doi.org/10.3390/polym14071334
Josic U, Mazzitelli C, Maravic T, Fidler A, Breschi L, Mazzoni A. Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy. Polymers. 2022; 14(7):1334. https://doi.org/10.3390/polym14071334
Chicago/Turabian StyleJosic, Uros, Claudia Mazzitelli, Tatjana Maravic, Ales Fidler, Lorenzo Breschi, and Annalisa Mazzoni. 2022. "Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy" Polymers 14, no. 7: 1334. https://doi.org/10.3390/polym14071334
APA StyleJosic, U., Mazzitelli, C., Maravic, T., Fidler, A., Breschi, L., & Mazzoni, A. (2022). Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy. Polymers, 14(7), 1334. https://doi.org/10.3390/polym14071334