Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Monotonic Tensile Test
2.3. Residual Hoop Stress Measurement
2.4. Finite Element (FE) Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress. Part 1-measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Poduška, J.; Hutař, P.; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, L. Residual stress in polyethylene pipes. Polym. Test. 2016, 54, 288–295. [Google Scholar] [CrossRef]
- White, J.R. Origins and measurements of internal stress in plastics. Polym. Test. 1984, 4, 165–191. [Google Scholar] [CrossRef]
- Bartczak, Z. Evaluation of effective density of the molecular network and concentration of the stress transmitters in amorphous layers of semicrystalline polyethylene. Polym. Test. 2018, 68, 261–269. [Google Scholar] [CrossRef]
- Guan, Z.W.; Boot, J.C. A method to predict triaxial residual stresses in plastic pipes. Polym. Eng. Sci. 2004, 44, 1828–1838. [Google Scholar] [CrossRef]
- Poduška, J.; Kučera, J.; Hutař, P.; Ševčík, M.; Křivánek, J.; Sadílek, J.; Náhlík, L. Residual stress distribution in extruded polypropylene pipes. Polym. Test. 2014, 40, 88–98. [Google Scholar] [CrossRef]
- Chen, B.; Jar, P.Y.B.; Mertiny, P.; Prybysh, R. A refined one-slit-ring method to quantify residual hoop stress in chlorinated polyvinyl chloride pipe-application to specimens after immersion in primer. Polym. Eng. Sci. 2019, 59, E296–E309. [Google Scholar] [CrossRef]
- Williams, J.G.; Hodgkinson, J.M.; Gray, A. The determination of residual stresses in plastic pipe and their role in fracture. Polym. Eng. Sci. 1981, 21, 822–828. [Google Scholar] [CrossRef]
- Hutař, P.; Ševčík, M.; Frank, A.; Náhlík, L.; Kučera, J.; Pinter, G. The effect of residual stress on polymer pipe lifetime. Eng. Fract. Mech. 2013, 108, 98–108. [Google Scholar] [CrossRef]
- Krishnaswamy, R.K. Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes. Polymer 2005, 46, 11664–11672. [Google Scholar] [CrossRef]
- Turnbull, A.; Maxwell, A.S.; Pillai, S. Residual stress in polymers-evaluation of measurement techniques. J. Mater. Sci. 1999, 34, 451–459. [Google Scholar] [CrossRef]
- Kim, J.S.; Yoo, J.H.; Oh, Y.J. A study on residual stress mitigation of the HDPE pipe for various annealing conditions. J. Mech. Sci. Technol. 2015, 29, 1065–1073. [Google Scholar] [CrossRef]
- Poduška, J.; Hutař, P.; Frank, A.; Kučera, J.; Sadílek, J.; Pinter, G.; Náhlík, L. Numerical simulations of cracked round bar test: Effect of residual stresses and crack asymmetry. Eng. Fract. Mech. 2018, 203, 18–31. [Google Scholar] [CrossRef]
- Savaria, V.; Hoseini, M.; Bridier, F.; Bocher, P.; Arkinson, P. On the measurement of residual stress in induction hardened parts. Mater. Sci. Forum 2011, 681, 431–436. [Google Scholar] [CrossRef]
- Poduška, J.; Kučera, J.; Hutař, P.; Ševčík, M.; Křivánek, J.; Sadílek, J.; Náhlík, L. The effect of specimen size on the determination of residual stress in polymer pipe wall. Key Eng. Mater. 2014, 627, 141–144. [Google Scholar] [CrossRef]
- Tan, N.; Jar, P.Y.B. Multi-relaxation test to characterize PE pipe performance. Plast. Eng. 2019, 75, 40–45. [Google Scholar] [CrossRef]
- Beer, F.P.; Johnston, E.R.; DeWolf, J.T.; Mazurek, D.F. Mechanics of Materials, 7th ed.; McGraw-Hill Education Ltd.: New York, NY, USA, 2015. [Google Scholar]
- Kwon, H.J.; Jar, P.Y.B. On the application of FEM to deformation of high-density polyethylene. Int. J. Solids Struct. 2008, 45, 3521–3543. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Jar, P.Y.B. Effect of aspect ratio on large deformation and necking of polyethylene. J. Mater. Sci. 2011, 46, 1110–1123. [Google Scholar] [CrossRef]
- Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403. [Google Scholar] [CrossRef]
- Lu, X.; Qian, R.; Brown, N. The effect of crystallinity on fracture and yielding of polyethylenes. Polymer 1995, 36, 4239–4244. [Google Scholar] [CrossRef]
- Cheng, C.; Widera, G.E. Development of maximum secondary creep strain method for lifetime of HDPE pipes. J. Press. Vessel Technol. 2009, 131, 021208. [Google Scholar] [CrossRef]
- Meidani, M.; Meguid, M.A.; Chouinard, L.E. On the response of polyethylene pipes to lateral ground movements: Insights from finite-discrete element analysis. Int. J. Geosynth. Ground Eng. 2020, 6, 15. [Google Scholar] [CrossRef]
- Tan, N.; Jar, P.Y.B. Determining deformation transition in polyethylene under tensile loading. Polymers 2019, 11, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, K.; Rastogi, A.; Strobl, G. A model treating tensile deformation of semicrystalline polymers: Quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules 2004, 37, 10165–10173. [Google Scholar] [CrossRef]
- Hong, K.; Rastogi, A.; Strobl, G. Model treatment of tensile deformation of semicrystalline polymers: Static elastic moduli and creep parameters derived for a sample of polyethylene. Macromolecules 2004, 37, 10174–10179. [Google Scholar] [CrossRef]
- ASTM D2837; Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe. ASTM International: West Conshohocken, PA, USA, 2011.
Material | Pipe Code | Density (g/cc) | Resin Yield Strength (MPa) | Hydrostatic Design Basis (MPa) at 23 °C | Melt Index (g/10 min) at 190 °C/2.16 kg |
---|---|---|---|---|---|
#1 u-MDPE | PE2708 | 0.940 | 19.3 | 8.62 | 0.2 |
#2 u-HDPE | PE3408 | 0.944 * | 22.8 * | 11.03 | 0.08 |
#3 b-MDPE | PE2708 | 0.940 | 19.3 | 8.62 | >0.15 |
#4 b-HDPE | PE4710 | 0.949 | 24.8 | 11.03 | 0.08 |
#5 u-MDPE | PE2708 | 0.940 | 19.3 | 8.62 | 0.2 |
#6 b-HDPE | PE4710 | 0.949 | >24.1 | 11.03 | 0.08 |
Material | Pipe Code | Elastic Modulus (MPa) |
---|---|---|
#1 u-MDPE | PE2708 | 570 |
#2 u-HDPE | PE3408 | 600 |
#3 b-MDPE | PE2708 | 560 |
#4 b-HDPE | PE4710 | 795 |
#5 u-MDPE | PE2708 | 560 |
#6 b-HDPE | PE4710 | 795 |
Material | Quasi-Static Stress at DB Transition (MPa) | Hydrostatic Design Basis at 23 °C (MPa) | Long-Term Hydrostatic Strength (MPa) |
---|---|---|---|
#1 u-MDPE | 8.18 | 8.62 | 8.27 to 10.55 |
#2 u-HDPE | 10.25 | 11.03 | 10.55 to 11.93 |
#3 b-MDPE | 7.25 | 8.62 | 8.27 to 10.55 |
#4 b-HDPE | 10.86 | 11.03 | 10.55 to 11.93 |
#5 u-MDPE | 7.25 | 8.62 | 8.27 to 10.55 |
#6 b-HDPE | 9.88 | 11.03 | 10.55 to 11.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, N.; Lin, L.; Deng, T.; Dong, Y. Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes. Polymers 2022, 14, 1458. https://doi.org/10.3390/polym14071458
Tan N, Lin L, Deng T, Dong Y. Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes. Polymers. 2022; 14(7):1458. https://doi.org/10.3390/polym14071458
Chicago/Turabian StyleTan, Na, Liyang Lin, Tao Deng, and Yongwu Dong. 2022. "Evaluating the Residual Stress and Its Effect on the Quasi-Static Stress in Polyethylene Pipes" Polymers 14, no. 7: 1458. https://doi.org/10.3390/polym14071458