Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Leached Water from Treated Wood
3.2. Morphology and Elemental Composition
3.3. Chemical Functionalities
3.4. Fire Performance
3.5. Dimensional Stability
3.6. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ribé, V. Environmental Issues Associated with Energy Technologies and Natural Resource Utilization; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volumes 1–5, ISBN 9780128096659. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Chemical Modification Processes. In Wood Modification Technologies Principles, Sustainability, and the Need for Innovation; CRC Press: Boca Raton, FL, USA, 2021; pp. 115–195. [Google Scholar]
- Hill, C.A.S.; Jones, D. The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides: The effect of chain length. Holzforschung 1996, 50, 457–462. [Google Scholar] [CrossRef]
- Lande, S.; Westin, M.; Schneider, M. Properties of furfurylated wood. Scand. J. For. Res. 2004, 19, 22–30. [Google Scholar] [CrossRef]
- Furuno, T.; Uehara, T.; Jodai, S. Combinations of wood and silicate 1. Impregnation by water glass and applications of aluminum sulfate and calcium chloride as reactants. Mokuzai Gakkaishi 1991, 37, 462–472. [Google Scholar]
- Stamm, A.J.; Seborg, R.M. Minimizing Wood Shrinkage and Swelling. Ind. Eng. Chem. 1936, 28, 1164–1169. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: A review. Wood Sci. Technol. 2004, 37, 339–348. [Google Scholar] [CrossRef]
- Larnøy, E.; Karaca, A.; Gobakken, L.R.; Hill, C.A.S. Polyesterification of wood using sorbitol and citric acid under aqueous conditions. Int. Wood Prod. J. 2018, 9, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Ogata, S.; Nishikawa, M.; Otsuka, Y.; Kawai, S.; Norimoto, M. Dimensional Stability, Mechanical Properties, and Color Changes of a Low Molecular Weight Melamine-Formaldehyde Resin Impregnated Wood. Mokuzai Gakkaishi 1993, 39, 181–189. [Google Scholar]
- Mallinson, R.G. Natural Gas Processing and Products. Encycl. Energy 2004, 4, 235–247. [Google Scholar] [CrossRef]
- Rossiter, E.C. Aldehyde Polymers: Phenolics and Aminoplastics. In Brydson’s Plastics Materials; Gilbert, M., Ed.; Elsevier Ltd.: Oxford, UK, 2017; pp. 705–742. ISBN 978-0-323-35824-8. [Google Scholar]
- Hrma, P. Reaction between Sodium Carbonate and Silica Sand at 874 °C < T < 1022 °C. J. Am. Ceram. Soc. 1985, 68, 337–341. [Google Scholar] [CrossRef]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Nawawi, D.S.; Abdillah, I.B.; Pari, G.; Pari, R. Evaluation of discoloration and subterranean termite resistance of four furfurylated tropical wood species after one-year outdoor exposure. Forests 2021, 12, 900. [Google Scholar] [CrossRef]
- Kong, L.; Guan, H.; Wang, X. In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy. ACS Sustain. Chem. Eng. 2018, 6, 3349–3357. [Google Scholar] [CrossRef]
- Guigo, N.; Mija, A.; Zavaglia, R.; Vincent, L.; Sbirrazzuoli, N. New insights on the thermal degradation pathways of neat poly(furfuryl alcohol) and poly(furfuryl alcohol)/SiO2 hybrid materials. Polym. Degrad. Stab. 2009, 94, 908–913. [Google Scholar] [CrossRef]
- LeVan, S.L. Chemistry of fire retardancy. In The Chemistry of Solid Wood; Rowell, R., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 531–574. [Google Scholar]
- Gao, M.; Yang, S.; Yang, R. Flame retardant synergism of GUP and boric acid by cone calorimetry. J. Appl. Polym. Sci. 2006, 102, 5522–5527. [Google Scholar] [CrossRef]
- Liu, C.; Yao, A.; Chen, K.; Shi, Y.; Feng, Y.; Zhang, P.; Yang, F.; Liu, M.; Chen, Z. MXene based core-shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Compos. Part B Eng. 2021, 226, 109363. [Google Scholar] [CrossRef]
- Liu, C.; Yang, D.; Sun, M.; Deng, G.; Jing, B.; Wang, K.; Shi, Y.; Fu, L.; Feng, Y.; Lv, Y.; et al. Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane. Compos. Commun. 2022, 29, 101055. [Google Scholar] [CrossRef]
- Liu, C.; Ping Zhang, Y.; Shi, O.; Rao, X.; Cai, S.; Fu, L.; Feng, Y.; Wang, L.; Zheng, X.; Yang, W. Enhanced Fire Safety of Rigid Polyurethane Foam via Synergistic Effect of Phosphorus/Nitrogen Compounds and Expandable Graphite. Molecules 2020, 25, 4741. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [Green Version]
- Higgins, C.E.; Baldwin, W.H. Dehydration of Orthophosphoric Acid. Anal. Chem. 1955, 27, 1780–1783. [Google Scholar] [CrossRef]
- Das, O.; Kim, N.K.; Hedenqvist, M.S.; Bhattacharyya, D. The flammability of biocomposites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 335–365. [Google Scholar]
- Das, O.; Kim, N.K.; Kalamkarov, A.L.; Sarmah, A.K.; Bhattacharyya, D. Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites. Polym. Degrad. Stab. 2017, 144, 485–496. [Google Scholar] [CrossRef]
- Lowden, L.; Hull, T. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Kawarasaki, M.; Hiradate, R.; Hirabayashi, Y.; Kikuchi, S.; Ohmiya, Y.; Lee, J.; Noaki, M.; Nakamura, N. Fire Retardancy of Fire-retardant-impregnated Wood after Natural Weathering I. Mokuzai Gakkaishi 2018, 64, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Karlsson, O.; Martinka, J.; Rantuch, P.; Garskaite, E.; Mantanis, G.I.; Jones, D.; Sandberg, D. Approaching Highly Leaching-Resistant Fire-Retardant Wood by In Situ Polymerization with Melamine Formaldehyde Resin. ACS Omega 2021, 6, 12733–12745. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Kim, I.; Mantanis, G.I.; Karlsson, O.; Jones, D.; Sandberg, D. Leach-resistant fire-retardant treated furfurylated wood by incorporating guanyl-urea phosphate. Wood Mater. Sci. Eng. 2021, 16, 429–431. [Google Scholar] [CrossRef]
- CEN 2020: SS-EN 84:2020; Wood Preservatives—Accelerated Ageing of Treated Wood Prior to Biological Testing—Leaching Procedure. CEN: Brussels, Belgium, 2020.
- ISO 5660-1:2015; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate–Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). ISO: Geneva, Switzerland, 2015.
- ISO 13061-3:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 3: Determination of Ultimate Strength in Static Bending. ISO: Geneva, Switzerland, 2014.
- ISO 13061-4:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 4: Determination of Modulus of Elasticity in Static Bending. ISO: Geneva, Switzerland, 2014.
- Niemz, P.; Stübi, T. Investigations of hardness measurements on wood based materials using a new universal measurement system. In Proceedings of the Symposium on Wood Machining, Vienna, Austria, 27–29 September 2000; pp. 51–61. [Google Scholar]
- CEN 2020: SS-EN 1534:2020; Wood Flooring and Parquet—Determination of Resistance to Indentation—Test Method. CEN: Brussels, Belgium, 2020.
- Sadeghi, R.; Jahani, F. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J. Phys. Chem. B 2012, 116, 5234–5241. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Sun, Z.; Xie, S. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng. 2021, 15, 854–871. [Google Scholar] [CrossRef]
- Chan, X.; Yang, P.; Ooi, C.; Cen, J.; Orlov, A.; Kim, T. Separation and Purification of Furfuryl Alcohol Monomer and Oligomers Using a Two-Phase Extracting Process. ACS Sustain. Chem. Eng. 2016, 4, 4084–4088. [Google Scholar] [CrossRef]
- Vázquez, G.; Alvarez, E.; Rendo, R.; Romero, E.; Navaza, J.M. Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 °C to 50 °C. J. Chem. Eng. Data 1996, 41, 806–808. [Google Scholar] [CrossRef]
- Lande, S.; Eikenes, M.; Westin, M. Chemistry and ecotoxicology of furfurylated wood. Scand. J. For. Res. 2004, 19, 14–21. [Google Scholar] [CrossRef]
- González Maldonado, G.M.; Assary, R.S.; Dumesic, J.; Curtiss, L.A. Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution. Energy Environ. Sci. 2012, 5, 6981–6989. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, H.; Shi, Y.; Hu, W.; Hong, N.; Zeng, W.; Ge, H.; Yu, X.; Song, L.; Hu, Y. Recent advances for microencapsulation of flame retardant. Polym. Degrad. Stab. 2015, 113, 96–109. [Google Scholar] [CrossRef]
- Pilgård, A.; Treu, A.; Van Zeeland, A.N.T.; Gosselink, R.J.A.; Westin, M. Toxic hazard and chemical analysis of leachates from furfurylated wood. Environ. Toxicol. Chem. 2010, 29, 1918–1924. [Google Scholar] [CrossRef] [PubMed]
- Nordstierna, L.; Lande, S.; Westin, M.; Karlsson, O.; Furó, I. Towards novel wood-based materials: Chemical bonds between lignin-like model molecules and poly(furfuryl alcohol) studied by NMR. Holzforschung 2008, 62, 709–713. [Google Scholar] [CrossRef]
- Choi, J.W.; Faix, O.; Meier, D. Characterization of Residual lignins from chemical pulps of spruce (Picea abies L.) and beech (Fagus sylvatica L.) by analytical pyrolysis-gas chromatography/mass spectrometry. Holzforschung 2001, 55, 185–192. [Google Scholar] [CrossRef]
- Choura, M.; Belgacem, N.M.; Gandini, A. Acid-catalyzed polycondensation of furfuryl alcohol: Mechanisms of chromophore formation and cross-linking. Macromolecules 1996, 29, 3839–3850. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Barsberg, S.; Venås, T.M. The fluorescence characteristics of furfurylated wood studied by fluorescence spectroscopy and confocal laser scanning microscopy. Wood Sci. Technol. 2010, 44, 51–65. [Google Scholar] [CrossRef]
- Tondi, G.; Link, M.; Oo, C.W.; Petutschnigg, A. A simple approach to distinguish classic and formaldehyde-free tannin based rigid foams by ATR FT-IR. J. Spectrosc. 2015, 2015, 902340. [Google Scholar] [CrossRef]
- Chuang, I.S.; Maciel, G.E.; Myers, G.E. Carbon-13 NMR study of curing in furfuryl alcohol resins. Macromolecules 1984, 17, 1087–1090. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral characterization of eucalyptus wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef]
- Faix, O. Characterization in Solid State. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 83–109. [Google Scholar]
- Shen, X.; Guo, D.; Jiang, P.; Li, G.; Yang, S.; Chu, F. Reaction mechanisms of furfuryl alcohol polymer with wood cell wall components. Holzforschung 2021, 75, 1150–1158. [Google Scholar] [CrossRef]
- Delmonte, J. Furfuryl Alcohol-Resorcinol Resin Composition. U.S. Patent 2,462,054, 15 February 1949. [Google Scholar]
- Mensah, R.A.; Xiao, J.; Das, O.; Jiang, L.; Xu, Q.; Alhassan, M.O. Application of adaptive neuro-fuzzy inference system in flammability parameter prediction. Polymers 2020, 12, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J.; Wang, J. Flammability and physical–mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO2. Eur. J. Wood Wood Prod. 2015, 73, 457–464. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Winandy, J. Chemical mechanism of fire retardance of boric acid on wood. Wood Sci. Technol. 2004, 38, 375–389. [Google Scholar] [CrossRef]
- Babu, K.; Rendén, G.; Mensah, R.A.; Kim, N.K.; Jiang, L.; Xu, Q.; Restás, Á.; Neisiany, R.E.; Hedenqvist, M.S.; Försth, M.; et al. A review on the flammability properties of carbon-based polymeric composites: State-of-the-art and future trends. Polymers 2020, 12, 1518. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Khosravi, F.; Mossayebi, Z.; Saedi Ardahaei, A.; Morshedi Dehaghi, F.; Khorasani, M.; Neisiany, R.E.; Das, O.; Marani, A.; Mensah, R.A.; et al. The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules 2020, 25, 5157. [Google Scholar] [CrossRef] [PubMed]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame Retardancy Index for thermoplastic composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef] [Green Version]
- Sargent, R. Evaluating dimensional stability in solid wood: A review of current practice. J. Wood Sci. 2019, 65, 36. [Google Scholar] [CrossRef]
- Hill, C.A.S. Modifying the Properties of Wood. In Wood Modification: Chemical, Thermal and Other Processes; Stevens, C.V., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2006; pp. 19–44. [Google Scholar]
- Rowell, R.M.; Pettersen, R.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites; Rowell, R., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 33–72. [Google Scholar]
- Li, W.; Zhang, X.X.; Yu, Z.; Yu, Y.S.; Yu, Y. Determining the curing parameters of furfuryl alcohol for wood modification by nanoindentation. Eur. J. Wood Wood Prod. 2017, 75, 81–87. [Google Scholar] [CrossRef]
- Herold, N.; Dietrich, T.; Grigsby, W.J.; Franich, R.A.; Winkler, A.; Buchelt, B.; Pfriem, A. Effect of Maleic Anhydride Content and Ethanol Dilution on the Polymerization of Furfuryl Alcohol in Wood Veneer Studied by Differential Scanning Calorimetry. BioResources 2013, 8, 1064–1075. [Google Scholar] [CrossRef]
- Candelier, K.; Thevenon, M.F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of wood thermal treatment and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef] [Green Version]
Specimen | Unmodified | 0-30FA | 3-30FA | 5-30FA | 3-30FA-EN84 | 5-30FA-EN84 |
---|---|---|---|---|---|---|
TTI (s) | 16.0 (5.5) | 15.8 (5.7) | 12.7 (0.6) | 15.0 (2.6) | 21.5 (1.9) | 23.0 (3.6) |
FIGRA (kW/m2s) | 0.77 (0.14) | 1.28 (0.08) | 0.85 (0.06) | 0.83 (0.15) | 0.84 (0.07) | 0.74 (0.00) |
FRI (m2s/kW) | - | - | 1.4 | 1.8 | 2.5 | 3.2 |
pHRR (kW/m2) | 315.1 (40.3) | 454.8 (23.7) | 274.9 (24.5) | 264.9 (56.8) | 289.6 (27.3) | 271.0 (12.8) |
THR (MJ/m2) | 79.5 (15.2) | 100.4 (6.1) | 66.5 (0.8) | 64.8 (2.3) | 69.8 (8.3) | 71.2 (2.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-F.; Karlsson, O.; Kim, I.; Myronycheva, O.; Mensah, R.A.; Försth, M.; Das, O.; Mantanis, G.I.; Jones, D.; Sandberg, D. Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate. Polymers 2022, 14, 1829. https://doi.org/10.3390/polym14091829
Lin C-F, Karlsson O, Kim I, Myronycheva O, Mensah RA, Försth M, Das O, Mantanis GI, Jones D, Sandberg D. Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate. Polymers. 2022; 14(9):1829. https://doi.org/10.3390/polym14091829
Chicago/Turabian StyleLin, Chia-Feng, Olov Karlsson, Injeong Kim, Olena Myronycheva, Rhoda Afriyie Mensah, Michael Försth, Oisik Das, George I. Mantanis, Dennis Jones, and Dick Sandberg. 2022. "Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate" Polymers 14, no. 9: 1829. https://doi.org/10.3390/polym14091829
APA StyleLin, C.-F., Karlsson, O., Kim, I., Myronycheva, O., Mensah, R. A., Försth, M., Das, O., Mantanis, G. I., Jones, D., & Sandberg, D. (2022). Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate. Polymers, 14(9), 1829. https://doi.org/10.3390/polym14091829