Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect
Abstract
:1. Introduction
2. Theoretical Background
2.1. Piezoelectric Effect
2.2. Piezoelectric Sensing Using Charge Amplifier
3. The 3D-Printed Piezoelectric Sensor Model
3.1. The 1D Model
3.2. Equivalent Piezoelectric Sensor Model
3.3. Special Case for and of 3D-Printed Piezoelectric Sensor
4. Experimental Methods
4.1. The 3D-Printed Piezoelectric Sensor
4.2. Electrode Resistivity and Dielectric Constant of Piezoelectric Layer
4.3. Impedance Measurement
5. Results
5.1. Electrode Resistivity and Dielectric Constant of Piezoelectric Layer
5.2. The 3D-Printed Sensor Impedance
5.3. and the Cutoff Frequency
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPLA | Conductive polylactic acid |
DOF | Degree of freedom |
EPAM | Electric poling-assisted additive manufacturing |
IPC | Integrated 3D printing and corona poling |
ME | Material extrusion |
PE | Piezoelectric |
PLA | Polylactic acid |
PVDF | Polyvinylidene fluoride |
TPU | Thermoplastic polyurethane |
Appendix A. Parameters Used in Material Extrusion
Filament | Print Speed (mm/s) | Extrusion Rate (%) | Cooling Setting (%) | Extrusion Width (mm) | Heated Bed () | Print Temperature () |
---|---|---|---|---|---|---|
PLA | 50 | 100 | 100 | 0.45 | 60 | 215 |
PVDF | 17 | 100 | 0 | 0.45 | 60 | 250 |
CPLA | 50 | 95 | 100 | 0.45 | 60 | 220 |
Appendix B. Measurements of Electrode Resistivity
Appendix C. Measurements of Dielectric Constant of Piezoelectric Layer
References
- Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; Malhotra, B.D. Recent advances in 3D printing technologies for wearable (bio)sensors. Addit. Manuf. 2021, 46, 102088. [Google Scholar] [CrossRef]
- Mashayekhi, F.; Bardon, J.; Westermann, S.; Addiego, F. Adhesion Optimization between Incompatible Polymers through Interfacial Engineering. Polymers 2021, 13, 4273. [Google Scholar] [CrossRef] [PubMed]
- Khosravani, M.R.; Reinicke, T. 3D-printed sensors: Current progress and future challenges. Sens. Actuators A Phys. 2020, 305, 111916. [Google Scholar] [CrossRef]
- Gaumet, A.V.; Ball, R.J.; Nogaret, A. Graphite-polydimethylsiloxane composite strain sensors for in-situ structural health monitoring. Sens. Actuators A Phys. 2021, 332, 113139. [Google Scholar] [CrossRef]
- Chatziathanasiou, G.M.; Chrysochoidis, N.A.; Rekatsinas, C.S.; Saravanos, D.A. A semi-active shunted piezoelectric tuned-mass-damper for multi-modal vibration control of large flexible structures. J. Sound Vib. 2022, 537, 117222. [Google Scholar] [CrossRef]
- Liang, H.; Hao, G.; Olszewski, O.Z. A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sens. Actuators A Phys. 2021, 331, 112743. [Google Scholar] [CrossRef]
- Cheng, Q.; Lv, Z.; Liu, Z.; Wang, Q. Theoretical modelling and experimental investigation on a frequency up-converted nonlinear piezoelectric energy harvester. Sens. Actuators A Phys. 2022, 347, 113979. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, J.; Wang, K.; Xu, D.; Wen, G. Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap. J. Sound Vib. 2022, 540, 117297. [Google Scholar] [CrossRef]
- Pires, F.A.; Sangiuliano, L.; Denayer, H.; Deckers, E.; Desmet, W.; Claeys, C. The use of locally resonant metamaterials to reduce flow-induced noise and vibration. J. Sound Vib. 2022, 535, 117106. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, H.; Xu, H.; Jin, Y.; Chen, G.; Zheng, W.; Wang, W.; Wang, Y.; Gao, L. Highly sensitive and wearable bionic piezoelectric sensor for human respiratory monitoring. Sens. Actuators A Phys. 2022, 345, 113818. [Google Scholar] [CrossRef]
- Arh, M.; Slavič, J.; Boltežar, M. Experimental identification of the dynamic piezoresistivity of fused-filament-fabricated structures. Addit. Manuf. 2020, 36, 101493. [Google Scholar] [CrossRef]
- Laszczak, P.; Jiang, L.; Bader, D.; Moser, D.; Zahedi, S. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications. Med. Eng. Phys. 2015, 37, 132–137. [Google Scholar] [CrossRef]
- Thi Ngoc Nga, D.; Mattana, G.; Thu, V.T.; Roussel, R.; Piro, B. A simple flexible printed capacitive pressure sensor for chronic wound monitoring. Sens. Actuators A Phys. 2022, 338, 113490. [Google Scholar] [CrossRef]
- Košir, T.; Slavič, J. Single-process fused filament fabrication 3D-printed high-sensitivity dynamic piezoelectric sensor. Addit. Manuf. 2022, 49, 102482. [Google Scholar] [CrossRef]
- Porter, D.A.; Hoang, T.V.; Berfield, T.A. Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit. Manuf. 2017, 13, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief Review of PVDF Properties and Applications Potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef]
- Jain, A.; Prashanth, K.J.; Sharma, A.K.; Jain, A.; Rashmi, P.N. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Eßlinger, S.; Geller, S.; Hohlfeld, K.; Gebhardt, S.; Michaelis, A.; Gude, M.; Schönecker, A.; Neumeister, P. Novel poling method for piezoelectric 0–3 composites and transfer to series production. Sens. Actuators A Phys. 2018, 270, 231–239. [Google Scholar] [CrossRef]
- Fan, J.; Gonzalez, D.; Garcia, J.; Newell, B.; Nawrocki, R.A. The Effects of Additive Manufacturing and Electric Poling Techniques on PVdF Thin Films: Towards 3D Printed Functional Materials. In Proceedings of the 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Virtual, 14–16 September 2020. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 2013, 46, 285305. [Google Scholar] [CrossRef]
- Kim, H.; Torres, F.; Wu, Y.; Villagran, D.; Lin, Y.; Tseng, T.L. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 2017, 26, 085027. [Google Scholar] [CrossRef]
- Lee, C.; Tarbutton, J. Polyvinylidene fluoride (PVDF) direct printing for sensors and actuators. Int. J. Adv. Manuf. Technol. 2019, 104, 3155–3162. [Google Scholar] [CrossRef]
- Li, F.; Liu, W.; Stefanini, C.; Fu, X.; Dario, P. A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System. Sensors 2010, 10, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.L.; Agarwala, S.; Yeong, W.Y. High Resolution Aerosol Jet Printing of Conductive Ink for Stretchable Electronics. In Proceedings of the International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 14–17 May 2018. [Google Scholar] [CrossRef]
- Lee, M.; Chen, C.Y.; Wang, S.; Cha, S.N.; Park, Y.J.; Kim, J.M.; Chou, L.J.; Wang, Z.L. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 2012, 24, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Kim, S.; Lee, J.H.; Kim, K.; Kim, S.W.; Kang, C.Y.; Yoon, S.J.; Kim, Y.S. All-solution-processed flexible thin film piezoelectric nanogenerator. Adv. Mater. 2012, 24, 6022–6027. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.L.; Tay, M.F.; Lee, J.M.; Ho, J.S.; Sim, L.N.; Yeong, W.Y.; Chong, T.H. Potential of Printed Electrodes for Electrochemical Impedance Spectroscopy (EIS): Toward Membrane Fouling Detection. Adv. Electron. Mater. 2021, 7, 2100043. [Google Scholar] [CrossRef]
- Palmić, T.B.; Slavič, J. Single-process 3D-printed stacked dielectric actuator. Int. J. Mech. Sci. 2022, 230, 107555. [Google Scholar] [CrossRef]
- Arh, M.; Slavič, J.; Boltežar, M. Design principles for a single-process 3d-printed accelerometer – theory and experiment. Mech. Syst. Signal Process. 2021, 152, 107475. [Google Scholar] [CrossRef]
- Karimi, M.; Asefnejad, A.; Aflaki, D.; Surendar, A.; Baharifar, H.; Saber-Samandari, S.; Khandan, A.; Khan, A.; Toghraie, D. Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J. Mater. Res. Technol. 2021, 14, 3070–3079. [Google Scholar] [CrossRef]
- Barši Palmić, T.; Slavič, J.; Boltežar, M. Process Parameters for FFF 3D-Printed Conductors for Applications in Sensors. Sensors 2020, 20, 4542. [Google Scholar] [CrossRef]
- Pejak Simunec, D.; Sola, A. Emerging Research in Conductive Materials for Fused Filament Fabrication: A Critical Review. Adv. Eng. Mater. 2022, 24, 2101476. [Google Scholar] [CrossRef]
- Konda Rodrigues, G.; Gardonio, P.; Dal Bo, L.; Turco, E. Piezoelectric patch vibration control unit connected to a self-tuning RL-shunt set to maximise electric power absorption. J. Sound Vib. 2022, 536, 117154. [Google Scholar] [CrossRef]
- Yamada, K.; Asami, T. Passive vibration suppression using 2-degree-of-freedom vibration absorber consisting of a beam and piezoelectric elements. J. Sound Vib. 2022, 532, 116997. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Zhou, H.; Ni, P.; Wang, L.; Zhang, J. Structural damage detection based on cross-correlation function with data fusion of various dynamic measurements. J. Sound Vib. 2022, 541, 117373. [Google Scholar] [CrossRef]
- Yin, Z.; Gao, S.; Jin, L.; Guo, S.; Wu, Q.; Li, Z. A shoe-mounted frequency up-converted piezoelectric energy harvester. Sens. Actuators A Phys. 2021, 318, 112530. [Google Scholar] [CrossRef]
- Ma, T.; Chen, Y.; Chen, H.; Zheng, Y.; Huang, G.; Wang, J.; Du, J. Tuning characteristics of a metamaterial beam with lateral-electric-field piezoelectric shuntings. J. Sound Vib. 2021, 491, 115738. [Google Scholar] [CrossRef]
- Buchberger, G.; Schoeftner, J. Modeling of slender laminated piezoelastic beams with resistive electrodes—comparison of analytical results with three-dimensional finite element calculations. Smart Mater. Struct. 2013, 22, 032001. [Google Scholar] [CrossRef]
- Schoeftner, J.; Buchberger, G.; Irschik, H. Static and dynamic shape control of slender beams by piezoelectric actuation and resistive electrodes. Compos. Struct. 2014, 111, 66–74. [Google Scholar] [CrossRef]
- Piezo Film Sensors Technical Manual; Measurement Specialties Inc.: Hampton, VA, USA, 1999.
- Rajala, S.N.K.; Mettänen, M.; Tuukkanen, S. Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensors. IEEE Sens. J. 2016, 16, 1692–1699. [Google Scholar] [CrossRef]
- ANSI/IEEE Std 176-1987; IEEE Standard on Piezoelectricity. IEEE: Piscataway, NJ, USA, 1988; pp. 2–11. [CrossRef]
- Moheimani, S.O.R.; Fleming, A.J. Piezoelectric Transducers for Vibration Control and Damping; Springer: London, UK, 2006; pp. 1–33. [Google Scholar]
- McConnell, K.G.; Varoto, P.S. Vibration Testing: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 1995; pp. 169–181. [Google Scholar]
- Pillage, L. Electronic Circuit & System Simulation Methods (SRE), 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1998; pp. 1–45. [Google Scholar]
- Powell, E.I.R. (Ed.) 10-Duals and analogues. In Introduction to Electric Circuits; Butterworth-Heinemann: Oxford, UK, 1995; pp. 233–241. [Google Scholar] [CrossRef]
- Shin, K.; Hammond, J. Fundamentals of Signal Processing for Sound and Vibration Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 123–131. [Google Scholar]
- Sriprachuabwong, C.; Srichan, C.; Lomas, T.; Tuantranont, A. Simple RC low pass filter circuit fabricated by unmodified desktop inkjet printer. In Proceedings of the ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Mai, Thailand, 19–21 May 2010; pp. 929–932. [Google Scholar]
- Chen, C.; Wang, L.; Liu, X.; Yang, W.; Lin, J.; Chen, G.; Yang, X. K0.5Na0.5NbO3-SrTiO3/PVDF Polymer Composite Film with Low Remnant Polarization and High Discharge Energy Storage Density. Polymers 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, L.; Zeng, Y.; Zhou, B.; Teng, K.; Ma, M.; Chen, L.; Xu, Z. Improving dielectric properties of poly(vinylidene fluoride) composites: Effects of surface functionalization of exfoliated graphene. J. Adhes. Sci. Technol. 2015, 29, 678–690. [Google Scholar] [CrossRef]
Material | Top Electrode Resistance () | Bottom Electrode Resistance () | Average Resistivity ( m) |
---|---|---|---|
CPLA | 16,832 | 15,873 | 0.220 |
silver paint | 1.58 | 2.70 |
Specimen Length (mm) | Measured Cutoff Freq. (Hz) | Calculated Cutoff Freq. (Hz) | Estimated Cutoff Freq. (Hz) |
---|---|---|---|
40 | 403,389 | 309,007 | 119,869 |
60 | 157,073 | 137,337 | 53,276 |
80 | 82,535 | 77,252 | 29,967 |
100 | 50,882 | 49,441 | 19,179 |
120 | 33,977 | 34,334 | 13,319 |
140 | 24,520 | 25,225 | 9785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košir, T.; Slavič, J. Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers 2023, 15, 158. https://doi.org/10.3390/polym15010158
Košir T, Slavič J. Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers. 2023; 15(1):158. https://doi.org/10.3390/polym15010158
Chicago/Turabian StyleKošir, Tilen, and Janko Slavič. 2023. "Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect" Polymers 15, no. 1: 158. https://doi.org/10.3390/polym15010158
APA StyleKošir, T., & Slavič, J. (2023). Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers, 15(1), 158. https://doi.org/10.3390/polym15010158