Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussions
3.1. Chemical Composition
3.2. Density
3.3. Scanning Electron Microscopy (SEM) Analysis
3.4. Fourier Transform Infrared Spectroscopy (FTIR-ATR) Analysis
3.5. X-ray Diffraction (XRD) Analysis
3.6. XPS
3.7. Thermogravimetric (TGA) Analysis
3.8. Tensile Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jayaramudu, J.; Guduri, B.R.; Rajulu, A.V. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr. Polym. 2010, 79, 847–851. [Google Scholar] [CrossRef]
- Jawaid, M.H.P.S.; Khalil, H.A. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Seki, Y.; Sarikanat, M.; Sever, K.; Durmuşkahya, C. Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos. Part B 2013, 44, 517–523. [Google Scholar] [CrossRef]
- Sarikanat, M.; Seki, Y.; Sever, K.; Durmuşkahya, C. Determination of properties of Althaea officinalis L.(Marshmallow) fibers as a potential plant fibre in polymeric composite materials. Compos. Part B 2014, 57, 180–186. [Google Scholar] [CrossRef]
- Gopinath, R.; Billigraham, P.; Sathishkumar, T.P. Investigation of Physico-chemical, Mechanical, and Thermal Properties of New Cellulosic Bast Fiber Extracted from the Bark of Bauhiniapurpurea. J. Nat. Fibers 2022, 19, 9624–9641. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Karthik, T.; Murugan, R. Characterization and analysis of ligno-cellulosic seed fiber from Pergularia daemia plant for textile applications. Fibers Polym. 2013, 14, 465–472. [Google Scholar] [CrossRef]
- Lemita, N.; Deghboudj, S.; Rokbi, M.; Rekbi, F.M.L.; Halimi, R. Characterization and analysis of novel natural cellulosic fiber extracted from Strelitzia reginae plant. J. Compos. Mater. 2022, 56, 99–114. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E.; Sreenivasan, V.S. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 2014, 110, 423–429. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos. Interfaces 2013, 20, 575–593. [Google Scholar] [CrossRef]
- Belouadah, Z.; Ati, A.; Rokbi, M. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr. Polym. 2015, 134, 429–437. [Google Scholar] [CrossRef]
- Arthanarieswaran, V.P.; Kumaravel, A.; Saravanakumar, S.S. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. Int. J. Polym. Anal. Charact. 2015, 20, 367–376. [Google Scholar] [CrossRef]
- Baskaran, P.G.; Kathiresan, M.; Senthamaraikannan, P.; Saravanakumar, S.S. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. J. Nat. Fibers 2018, 15, 62–68. [Google Scholar] [CrossRef]
- Hyness, N.R.J.; Vignesh, N.J.; Senthamaraikannan, P.; Saravanakumar, S.; Sanjay, M. Characterization of new natural cellulosic fiber from heteropogon contortus plant. J. Nat. Fibers 2015, 15, 146–153. [Google Scholar] [CrossRef]
- Eyupoglu, S.; Merdan, N. Physicochemical Properties of New Plant Based Fiber from Lavender Stem. J. Nat. Fibers 2021, 19, 9248–9258. [Google Scholar] [CrossRef]
- Konyar, S.T. An Overview of Pollen and Anther Wall Development in Catalpa bignonioides Walter (BIGNONIACEAE). Trak. Univ. J. Nat. Sci. 2017, 18, 123–132. [Google Scholar]
- Demeshko, O.V.; Krivoruchko, O.V.; Volochai, V.I.; Kovalev, V.V. Biological active substances of leaves of Catalpa bignonioides from Ukraine. In Proceedings of the XIII International Symposium on the Chemistry of Natural Compounds, Shanghai, China, 16–19 October 2019; p. 84. [Google Scholar]
- Erper, I.; Ozer, G.; Kalkan, C. First report of powdery mildew caused by Erysiphe elevata on Catalpa bignonioides in Turkey. J. Plant Pathol. 2019, 101, 195. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Datta, S.; Talukdar, A.D.; Choudhury, M.D. Phytochemistry of the family Bignoniaceae—A review. Assam Univ. J. 2011, 7, 145–150. [Google Scholar]
- De Abreu, M.B.; Temraz, A.; Vassallo, A.; Braca, A. De Tommasi, N. Phenolic glycosides from Tabebuia argentea and Catalpa bignonioides. Phytochem. Lett. 2014, 7, 85–88. [Google Scholar] [CrossRef]
- Munoz-Mingarro, D.; Acero, N.; Llinares, F.; Pozuelo, J.M.; de Mera, A.G.; Vicenten, J.A.; Perez, C. Biological activity of extracts from Catalpa bignonioides Walt. (Bignoniaceae). J. Ethnopharmacol. 2003, 87, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Ekmekçi Körlü, A.; Bozacı, E. Properties of Flax and Retting of Flax. Text. Appar. 2006, 16, 276–280. [Google Scholar]
- Balaji, A.N.; Nagarajan, K.J. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr. Polym. 2017, 174, 200–208. [Google Scholar]
- Altinisik, A.; Seki, Y.; Ertas, S.; Akar, E.; Bozacı, E.; Seki, Y. Evaluating of Agave americana fibers for biosorption of dye from aqueous solution. Fibers Polym. 2015, 16, 370–377. [Google Scholar] [CrossRef]
- Sumihartati, A.; Wardiningsih, W.; Al Kautsar, N.; Permana, M.; Pradana, S.; Rudy, R. Natural cellulosic fiber from Cordyline Australis leaves for textile application: Extraction and characterization. Res. J. Text. Appar. 2021, 26, 276–290. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- Bulut, Y.; Aksit, A. A comparative study on chemical treatment of jute fiber: Potassium dichromate, potassium permanganate and sodium perborate trihydrate. Cellulose 2013, 20, 3155–3164. [Google Scholar] [CrossRef]
- Seki, Y.; Seki, Y.; Sarikanat, M.; Sever, K.; Durmuşkahya, C.; Bozacı, E. Evaluation of linden fibre as a potential reinforcement material for polymer composites. J. Ind. Text. 2016, 45, 1221–1238. [Google Scholar] [CrossRef]
- Muensri, P.; Kunanopparat, T.; Menut, P.; Siriwattanayotin, S. Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Compos. Part A 2011, 42, 173–179. [Google Scholar] [CrossRef]
- Shebani, A.N.; Van Reenen, A.J.; Meincken, M. The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim. Acta 2009, 481, 52–56. [Google Scholar] [CrossRef]
- Tajvidi, M.; Takemura, A. Thermal degradation of natural fiber-reinforced polypropylene composites. Thermoplast. Compos. Mater. 2010, 23, 281–298. [Google Scholar] [CrossRef]
- ArunRamnath, R.; Murugan, S.; Sanjay, M.R.; Vinod, A.; Indran, S.; Elnaggar, A.Y.; Siengchin, S. Characterization of novel natural cellulosic fibers from Abutilon Indicum for potential reinforcement in polymer composites. Polym. Compos. 2022, in press. [Google Scholar] [CrossRef]
- Rao, H.J.; Singh, S.; Janaki Ramulu, P. Characterization of a Careya Arborea Bast Fiber as Potential Reinforcement for Light Weight Polymer Biodegradable Composites. J. Nat. Fibers 2022, 20, 1–17. [Google Scholar] [CrossRef]
- Seki, Y.; Selli, F.; Erdoğan, Ü.H.; Atagür, M.; Seydibeyoğlu, M.Ö. A review on alternative raw materials for sustainable production: Novel plant fibers. Cellulose 2022, 29, 4877–4918. [Google Scholar]
- Adeniyi, A.G.; Onifade, D.V.; Ighalo, J.O.; Adeoye, A.S. A review of coir fiber reinforced polymer composites. Compos. Part B 2019, 176, 107305. [Google Scholar] [CrossRef]
- Jeyabalaji, V.; Kannan, G.R.; Ganeshan, P.; Raja, K.; NagarajaGanesh, B.; Raju, P. Extraction and characterization studies of cellulose derived from the roots of Acalypha indica L. J. Nat. Fibers 2021, 19, 4544–4556. [Google Scholar] [CrossRef]
- Bozaci, E. Optimization of the alternative treatment methods for Ceiba pentandra (L.) Gaertn (kapok) fiber using response surface methodology. J. Text. Inst. 2019, 110, 1404–1414. [Google Scholar] [CrossRef]
- Selvan, M.T.G.A.; Binoj, J.S.; Moses, J.T.E.J.; Sai, N.P.; Siengchin, S.; Sanjay, M.R.; Liu, Y. Extraction and characterization of natural cellulosic fiber from fragrant screw pine prop roots as potential reinforcement for polymer composites. Polym. Compos. 2022, 43, 320–329. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
- Köktaş, S.; Keskin, Ö.Y.; Dalmiş, R.; Seki, Y.; Balci Kiliç, G. Extraction and Characterization of Natural Cellulosic Fiber from Taraxacum Sect. Ruderalia. J. Nat. Fibers 2022, 19, 14328–14336. [Google Scholar] [CrossRef]
- Belaadi, A.; Amroune, S.; Seki, Y.; Keskin, O.Y.; Köktaş, S.; Bourchak, M.; Jawaid, M. Extraction and Characterization of a New Lignocellulosic Fiber from Yucca Treculeana L. Leaf as Potential Reinforcement for Industrial Biocomposites. J. Nat. Fibers 2022, 19, 12235–12250. [Google Scholar] [CrossRef]
- Ilangovan, M.; Guna, V.; Prajwal, B.; Jiang, Q.; Reddy, N. Extraction and characterisation of natural cellulose fibers from Kigelia Africana. Carbohydr. Polym. 2020, 236, 115996. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, P.; Senthamaraikannan, P.; Sanjay, M.R.; Marichelvam, M.K.; Jawaid, M. Study on characterization of furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 2018, 181, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Korte, S. Processing-Property Relationships of Hemp Fibre. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2006. [Google Scholar]
- Manimaran, P.; Saravanan, S.P.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater. Res. Technol. 2019, 8, 1952–1963. [Google Scholar] [CrossRef]
- Albayrak, D.; Seki, Y.; Balcı Kılıç, G.; Koktas, S.; Keskin, Ö.Y.; Dalmış, R.; Karademir, C. Exploration of alternative cellulosic natural fiber from the stem of Malva Slyvestris. J. Nat. Fibers 2022, 19, 12614–12631. [Google Scholar] [CrossRef]
- Divya, D.; Suyambulingam, I.; Sanjay, M.R.; Siengchin, S. Suitability examination of novel cellulosic plant fiber from Furcraea selloa K. Koch peduncle for a potential polymeric composite reinforcement. Polym. Compos. 2022, in press. [Google Scholar] [CrossRef]
- Bright, B.M.; Joseph Selvi, B.; Abu Hassan, S.; Mustapha Jaafar, M.; Siengchin, S.; Mavinkere Rangappa, S.; Padmavathy, S.R. Characterization of chemically treated new natural cellulosic fibers from peduncle of Cocos nucifera L. Var typica. Polym. Compos. 2021, 42, 6403–6416. [Google Scholar] [CrossRef]
- Keskin, O.Y.; Dalmis, R.; Balci Kilic, G.; Seki, Y.; Koktas, S. Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 2020, 27, 9963–9974. [Google Scholar] [CrossRef]
- Buchert, J.; Pere, J.; Johansson, L.S.; Campbell, J.M. Analysis of the surface chemistry of linen and cotton fabrics. Text. Res. J. 2001, 71, 626–629. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M.C. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites. Compos. Sci. Technol. 2007, 67, 1986–1991. [Google Scholar] [CrossRef]
- Tran, L.Q.N.; Yuan, X.W.; Bhattacharya, D. Fibermatrix interfacial adhesion in natural fiber composites. Int. J. Mod. Phys. B 2015, 29, 1540018. [Google Scholar] [CrossRef]
- Kılınç, A.Ç.; Köktaş, S.; Seki, Y.; Atagür, M.; Dalmış, R.; Erdoğan, Ü.H.; Seydibeyoğlu, M.Ö. Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos. Part B 2018, 140, 1–8. [Google Scholar] [CrossRef]
- Dalmis, R.; Kilic, G.B.; Seki, Y.; Koktas, S.; Keskin, O.Y. Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose 2020, 27, 8621–8634. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W.A. review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef]
- Seraji, S.M.; Gan, H.; Swan, S.R.; Varley, R.J. Phosphazene as an effective flame retardant for rapid curing epoxy resins. React. Funct. Polym. 2021, 164, 104910. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.A.; Hinrichsen, G.I. Biofibers, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Silva, G.G.; De Souza, D.A.; Machado, J.C.; Hourston, D.J. Mechanical and thermal characterization of native Brazilian coir fiber. J. Appl. Polym. Sci. 2020, 76, 1197–1206. [Google Scholar] [CrossRef]
Element Survey | C1s (%) | O1s (%) | Ca2p (%) | P2p (%) | N1s (%) | S2p (%) | Mg1s (%) | Si2p (%) | Na1s (%) | C/O | O/C |
---|---|---|---|---|---|---|---|---|---|---|---|
49.87 | 31.35 | 8.21 | 3.53 | 2.11 | 1.72 | 1.24 | 1.03 | 0.95 | 1.59 | 0.63 |
Td °C | Tmax °C | Rmax %/min | CY(Air)-800 °C | CY(N2)-800 °C | |||
---|---|---|---|---|---|---|---|
(Air) | (N2) | (Air) | (N2) | (Air) | (N2) | ||
67 | 68 | 301 | 314 | 5.760 | 4.120 | 0.93 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozaci, E.; Altınışık Tağaç, A. Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products. Polymers 2023, 15, 201. https://doi.org/10.3390/polym15010201
Bozaci E, Altınışık Tağaç A. Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products. Polymers. 2023; 15(1):201. https://doi.org/10.3390/polym15010201
Chicago/Turabian StyleBozaci, Ebru, and Aylin Altınışık Tağaç. 2023. "Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products" Polymers 15, no. 1: 201. https://doi.org/10.3390/polym15010201
APA StyleBozaci, E., & Altınışık Tağaç, A. (2023). Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products. Polymers, 15(1), 201. https://doi.org/10.3390/polym15010201