Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes
Abstract
1. Introduction
2. Experimental Setup
2.1. Materials
2.2. Rubber Compounding
2.3. Characterization and Testing
3. Results and Discussion
3.1. Curing Characteristics
3.2. Dynamic Property
3.3. Mechanical Properties
3.4. Wide Angle X-Ray Scattering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, C.G.; Hardman, N.J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers 2021, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Valvez, S.; Maceiras, A.; Santos, P.; Reis, P.N.B. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 2021, 14, 845. [Google Scholar] [CrossRef]
- El-Nemr, K.F.; Ali, M.A.; Gad, Y.H. Manifestation of the silicate filler additives and electron beam irradiation on properties of SBR/devulcanized waste tire rubber composites for floor tiles applications. Polym. Compos. 2022, 43, 366. [Google Scholar] [CrossRef]
- Mou, W.; Li, J.; Fu, X.; Huang, C.; Chen, L.; Liu, Y. SiO2 and ZnO hybrid nanofillers modified natural rubber latex: Excellent mechanical and antibacterial properties. Polym. Eng. Sci. 2022, 62, 3110. [Google Scholar] [CrossRef]
- Bakošová, D.; Bakošová, A. Testing of Rubber Composites Reinforced with Carbon Nanotubes. Polymers 2022, 14, 3039. [Google Scholar] [CrossRef]
- Kazemi, H.; Mighri, F.; Park, K.W.; Frikha, S.; Rodrigue, D. Hybrid nanocellulose/carbon nanotube/natural rubber nanocomposites with a continuous three-dimensional conductive network. Polym. Compos. 2022, 43, 2362. [Google Scholar] [CrossRef]
- Ren, Z.; Fan, M.; Zhang, Z.; Lin, Y.; Guo, Z. Superhydrophobic Carbon Nanotube–Metal Rubber Composites for Emulsion Separation. ACS Appl. Nano Mater. 2021, 4, 13643–13654. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Pongwisuthiruchte, A.; Potiyaraj, P. Up-to-date review on the development of high performance rubber composites based on halloysite nanotube. Appl. Clay Sci. 2019, 183, 105300. [Google Scholar] [CrossRef]
- Nabil, H.; Ismail, H. Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites. J. Thermoplas. Compos. Mater. 2015, 28, 415–430. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Lei, Y.; Liu, M.; Jia, D. Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer 2008, 49, 4871–4876. [Google Scholar] [CrossRef]
- Waesateh, K.; Saiwari, S.; Ismail, H.; Othman, N.; Soontaranon, S.; Hayeemasae, N. Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. Inter. J. Polym. Anal. Charac. 2018, 23, 260–270. [Google Scholar] [CrossRef]
- Hayeemasae, N.; Waesateh, K.; Saiwari, S.; Ismail, H.; Othman, N. Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidized natural rubber. Polym. Bull. 2021, 78, 7147–7166. [Google Scholar] [CrossRef]
- Raman, V.S.; Rooj, S.; Das, A.; Stöckelhuber, K.W.; Simon, F.; Nando, G.B.; Heinrich, G. Reinforcement of Solution Styrene Butadiene Rubber by Silane Functionalized Halloysite Nanotubes. J. Macromol. Sci. Part A 2013, 50, 1091–1106. [Google Scholar] [CrossRef]
- Masa, A.; Hayeemasae, N. Insight into Mechanical Properties and Strain-induced Crystallisation of Epoxidized Natural Rubber Filled with Various Silanized Halloysite Nanotubes. Mater. Res. 2022, 25, e20210602. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Zhang, C.; Yang, W.; Lin, J.; Bian, X.; He, S. Performance of silicone rubber composites using boron nitride to replace alumina tri-hydrate. High Vol. 2021, 6, 480–486. [Google Scholar] [CrossRef]
- Yuan, P.; Southon, P.D.; Liu, Z.; Green, M.E.; Hook, J.M.; Antill, S.J.; Kepert, C.J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751. [Google Scholar] [CrossRef]
- He, S.; Hu, J.; Zhang, C.; Wang, J.; Chen, L.; Bian, X.; Lin, J.; Du, X. Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane. Polym. Test. 2018, 67, 295–301. [Google Scholar] [CrossRef]
- He, S.; Xue, Y.; Lin, J.; Zhang, L.; Du, X.; Chen, L. Effect of silane coupling agent on the structure and mechanical properties of nano-dispersed clay filled styrene butadiene rubber. Polym. Compos. 2016, 37, 890–896. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J., Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Marykutty, C.; Mathew, G.; Mathew, E.; Thomas, S. Studies on novel binary accelerator system in sulfur vulcanization of natural rubber. J. Appl. Polym. Sci. 2003, 90, 3173–3182. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Thakur, V.; Mahaling, R.; Bhowmick, A.K.; Heinrich, G. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater. Des. 2010, 31, 2151–2156. [Google Scholar] [CrossRef]
- Kaewsakul, W.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polym. Eng. Sci. 2015, 55, 836–842. [Google Scholar] [CrossRef]
- Jehsoh, N.; Masa, A.; Surya, I.; Ismail, H.; Hayeemasae, N. Reducing the Payne Effect of the Natural Rubber/Sepiolite Composite by Introducing Modified Palm Stearin. Polymer 2022, 46, 6–12. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar] [CrossRef]
- Chenal, J.M.; Gauthier, C.; Chazeau, L.; Guy, L.; Bomal, Y. Parameters governing strain induced crystallization in filled natural rubber. Polymer 2007, 48, 6893–6901. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, S.-Y.; Chung, K.-H.; Jang, K.-S. Phlogopite-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) Composites with Aminosilane Compatibilizer. Polymers 2021, 13, 2318. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.; Ryu, S.; Gu, G.X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 2020, 189, 108509. [Google Scholar] [CrossRef]
- Hayeemasae, N.; Sensem, Z.; Surya, I.; Sahakaro, K.; Ismail, H. Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers 2020, 12, 766. [Google Scholar] [CrossRef]
- Toki, S.; Fujimaki, T.; Okuyama, M. Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 2000, 41, 5423–5429. [Google Scholar] [CrossRef]
- Murakami, S.; Senoo, K.; Toki, S.; Kohjiya, S. Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 2002, 43, 2117–2120. [Google Scholar] [CrossRef]
- Spratte, T.; Plagge, J.; Wunde, M.; Klüppel, M. Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polymer 2017, 115, 12–20. [Google Scholar] [CrossRef]
- Ozbas, B.; Toki, S.; Hsiao, B.S.; Chu, B.; Register, R.A.; Aksay, I.A.; Prud’homme, R.K.; Adamson, D.H. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 718–723. [Google Scholar] [CrossRef]
Ingredients | Amount (phr) | ||||
---|---|---|---|---|---|
Control | TESPT | APTES | AEAPTMS | VTMS | |
RSS 3 | 100 | 100 | 100 | 100 | 100 |
Zinc oxide | 5 | 5 | 5 | 5 | 5 |
Stearic acid | 1 | 1 | 1 | 1 | 1 |
HNT | 10 | 10 | 10 | 10 | 10 |
Silane * | - | 0.5 | 0.4 | 0.4 | 0.3 |
CBS | 2 | 2 | 2 | 2 | 2 |
Sulfur | 2 | 2 | 2 | 2 | 2 |
Silane Type | ML (dN.m) | MH (dN.m) | MH-ML (dN.m) | ts1 (Min) | tc90 (Min) | CRI (Min−1) |
---|---|---|---|---|---|---|
Control | 1.12 | 9.66 | 8.54 | 1.15 | 2.99 | 32.29 |
TESPT | 1.14 | 9.61 | 8.47 | 1.24 | 2.84 | 33.97 |
APTES | 1.08 | 10.01 | 8.93 | 0.98 | 3.02 | 32.13 |
AEAPTMS | 1.15 | 9.95 | 8.80 | 0.76 | 2.84 | 34.45 |
VTMS | 0.98 | 9.72 | 8.74 | 1.04 | 3.33 | 28.99 |
Silane Type | Tensile Strength (MPa) | Elongation at Break (%) | M100 (MPa) | M300 (MPa) |
---|---|---|---|---|
Control | 26.84 ± 0.36 | 656 ± 19 | 0.85 ± 0.01 | 2.37 ± 0.02 |
TESPT | 26.57 ± 0.52 | 655 ± 16 | 0.87 ± 0.02 | 2.67 ± 0.12 |
APTES | 26.81 ± 0.45 | 650 ± 6 | 0.86 ± 0.48 | 2.40 ± 0.49 |
AEAPTMS | 28.17 ± 0.19 | 621 ± 19 | 0.90 ± 0.01 | 3.03 ± 0.18 |
VTMS | 26.84 ± 0.45 | 653 ± 9 | 0.84 ± 0.02 | 2.50 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayeemasae, N.; Masa, A.; Othman, N.; Surya, I. Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers 2023, 15, 29. https://doi.org/10.3390/polym15010029
Hayeemasae N, Masa A, Othman N, Surya I. Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers. 2023; 15(1):29. https://doi.org/10.3390/polym15010029
Chicago/Turabian StyleHayeemasae, Nabil, Abdulhakim Masa, Nadras Othman, and Indra Surya. 2023. "Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes" Polymers 15, no. 1: 29. https://doi.org/10.3390/polym15010029
APA StyleHayeemasae, N., Masa, A., Othman, N., & Surya, I. (2023). Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers, 15(1), 29. https://doi.org/10.3390/polym15010029