Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PS and PS@SiO2 Microspheres
2.3. Preparation of PEs with a Sandwich Structure
2.4. Characterization
3. Results and Discussion
3.1. Preparation and Characterization of PEs
3.2. Mechanochromic Properties of the Pes
3.3. Patterning of the PEs
3.4. Applications of the PEs as a Visualized Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, B.; Yao, W.; Zeng, P.; Li, X.; Wang, H.; Liu, L.; Feng, Y.; Luo, C.; Wu, W. All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J. Mater. Chem. C. 2019, 7, 809–818. [Google Scholar] [CrossRef]
- Yeo, J.C.; Yap, H.K.; Xi, W.; Wang, Z.; Yeow, C.H.; Lim, C.T. Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications. Adv. Mater. Technol. 2016, 1, 1600018. [Google Scholar] [CrossRef]
- Luo, C.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-Step-Printed, Highly Sensitive, Textile-Based, Tunable Performance Strain Sensors for Human Motion Detection. Adv. Mater. Technol. 2020, 5, 1900925. [Google Scholar] [CrossRef]
- Trung, T.Q.; Lee, N.E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, W.; Yi, Y.; Min, B.K.; Mondal, S.; An, K.S.; Choi, C.G. High Durability and Waterproofing rGO/SWCNT-Fabric-Based Multifunctional Sensors for Human-Motion Detection. ACS Appl. Mater. Interfaces 2018, 10, 3921–3928. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, Y.; Han, X.; Yang, Y.; Ling, J.; Jian, M.; Zhang, Y.; Yang, Y.; Ren, T. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano 2018, 12, 9134–9141. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, L.; Li, R.; Zhang, Z.; Wang, Q.; Yang, J.; Guo, C.; Pan, T. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Adv. Mater. 2021, 33, 2003464. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Guo, J.; Zhang, S.; Niu, W. Photonic vitrimer-based electronics with self-healing and ultrastable visual-digital outputs for wireless strain sensing. Chem. Eng. J. 2022, 450, 138285. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Adv. Funct. Mater. 2020, 30, 1904523. [Google Scholar] [CrossRef]
- Georgopoulou, A.; Clemens, F. Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications. ACS Appl. Electron. Mater. 2020, 2, 1826–1842. [Google Scholar] [CrossRef]
- Zhong, J.; Ma, Y.; Song, Y.; Zhong, Q.; Chu, Y.; Karakurt, I.; Bogy, D.B.; Lin, L. A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human–Machine Interfaces. ACS Nano 2019, 13, 7107–7116. [Google Scholar] [CrossRef]
- Li, T.; Qiao, F.; Huang, P.; Su, Y.; Wang, L.; Li, X.; Li, H.; Tan, Y.; Zhou, Z. Flexible Optical Fiber-Based Smart Textile Sensor for Human–Machine Interaction. IEEE Sens. J. 2022, 22, 19336–19345. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 2020, 117, 18310–18316. [Google Scholar] [CrossRef]
- Shan, Y.; Li, Z.; Yu, T.; Wang, X.; Cui, H.; Yang, K.; Cui, Y. Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol. 2022, 218, 109208. [Google Scholar] [CrossRef]
- Li, M.; Tan, H.; Jia, L.; Zhong, R.; Peng, B.; Zhou, J.; Xu, J.; Xiong, B.; Zhang, L.; Zhu, J. Supramolecular Photonic Elastomers with Brilliant Structural Colors and Broad-Spectrum Responsiveness. Adv. Funct. Mater. 2020, 30, 2000008. [Google Scholar] [CrossRef]
- Zhao, R.; He, Y.; He, Y.; Li, Z.; Chen, M.; Zhou, N.; Tao, G.; Hou, C. Dual-Mode Fiber Strain Sensor Based on Mechanochromic Photonic Crystal and Transparent Conductive Elastomer for Human Motion Detection. ACS Appl. Mater. Interfaces 2023, 15, 16063–16071. [Google Scholar] [CrossRef]
- Li, M.; Lyu, Q.; Peng, B.; Chen, X.; Zhang, L.; Zhu, J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. Adv. Mater. 2022, 34, e2110488. [Google Scholar] [CrossRef]
- Meng, Z.; Huang, B.; Wu, S.; Li, L.; Zhang, S. Bio-inspired transparent structural color film and its application in biomimetic camouflage. Nanoscale 2019, 11, 13377–13384. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, S.; Tang, B.; Ma, W.; Zhang, S. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale 2018, 10, 14755–14762. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, K.; Mu, Z.; Liu, Z.; Tang, R. Chameleon-Inspired Stress-Responsive Multicolored Ultratough Films. ACS Appl. Mater. Interfaces 2020, 12, 36731–36739. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Cao, X.; Alsaid, Y.; Cheng, J.; Wang, Y.; Zhao, Y.; He, X.; Zhang, S.; Niu, W. Interactively mechanochromic electronic textile sensor with rapid and durable electrical/optical response for visualized stretchable electronics. Chem. Eng. J. 2021, 426, 130870. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, B.; Yang, D.; Ma, D.; Huang, S. Chameleon-Inspired Brilliant and Sensitive Mechano-Chromic Photonic Skins for Self-Reporting the Strains of Earthworms. ACS Appl. Mater. Interfaces 2022, 14, 11672–11680. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Choi, T.M.; Kim, B.; Han, S.H.; Lee, J.M.; Kim, S.H. Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays. ACS Nano 2017, 11, 11350–11357. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Liu, Y.; Wu, S.; Zhang, S.; Niu, W. Biomimetic Chromotropic Photonic-Ionic Skin with Robust Resilience, Adhesion, and Stability. Adv. Funct. Mater. 2022, 32, 2204467. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, H.; Liu, T.; Liu, H.; Zhao, F.; Li, X.; Wang, C.; Chen, X.; Shao, J. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. Mater. Horiz. 2023, 10, 2024–2034. [Google Scholar] [CrossRef]
- Li, M.; Zhou, B.; Lyu, Q.; Jia, L.; Tan, H.; Xie, Z.; Xiong, B.; Xue, Z.; Zhang, L.; Zhu, J. Self-healing and recyclable photonic elastomers based on a water soluble supramolecular polymer. Mater. Chem. Front. 2019, 3, 2707–2715. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Lu, Y.C.; Yang, H. Self-Assembled Mechanochromic Shape Memory Photonic Crystals by Doctor Blade Coating. ACS Appl. Mater. Interfaces 2020, 12, 36478–36484. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhou, Z.; Chen, S. Robust Mechanochromic Elastic One-Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Adv. Opt. Mater. 2014, 2, 652–662. [Google Scholar] [CrossRef]
- Jia, X.; Wang, J.; Wang, K.; Zhu, J. Highly Sensitive Mechanochromic Photonic Hydrogels with Fast Reversibility and Mechanical Stability. Langmuir 2015, 31, 8732–8737. [Google Scholar] [CrossRef]
- Kajita, T.; Noro, A.; Matsushita, Y. Design and properties of supramolecular elastomers. Polymer 2017, 128, 297–310. [Google Scholar] [CrossRef]
- Lee, G.H.; Han, S.H.; Kim, J.B.; Kim, J.H.; Lee, J.M.; Kim, S.H. Colloidal Photonic Inks for Mechanochromic Films and Patterns with Structural Colors of High Saturation. Chem. Mater. 2019, 31, 8154–8162. [Google Scholar] [CrossRef]
- Tan, H.; Lyu, Q.; Xie, Z.; Li, M.; Wang, K.; Wang, K.; Xiong, B.; Zhang, L.; Zhu, J. Metallosupramolecular Photonic Elastomers with Self-Healing Capability and Angle-Independent Color. Adv. Mater. 2019, 31, e1805496. [Google Scholar] [CrossRef]
- Xu, Z.; Li, R.; Li, H.; Gao, G.; Chen, T. Flexible and adhesive liquid-free ionic conductive elastomers toward human–machine interaction. Soft Matter 2022, 18, 7103–7111. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small. 2017, 13, 1602790. [Google Scholar] [CrossRef]
- Xie, Y.; Xie, R.; Yang, H.; Chen, Z.; Hou, J.; López-Barrón, C.R.; Wagner, N.J.; Gao, K. Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Appl. Mater. Interfaces 2018, 10, 32435–32443. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, Q.; Sun, H.; Liu, P.; Hu, D.; Pei, Y.; Liu, W.; Crispin, X.; Fabiano, S.; Ma, Y.; et al. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems. Adv. Mater. 2021, 33, 2102990. [Google Scholar] [CrossRef]
- Lee, Y.; Song, W.J.; Sun, J.Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Whitesides, G.M. Soft Robotics. Angew. Chem. Int. Ed. 2018, 57, 4258–4273. [Google Scholar] [CrossRef]
- Tang, B.; Zheng, X.; Lin, T.; Zhang, S. Hydrophobic structural color films with bright color and tunable stop-bands. Dyes. Pigments 2014, 104, 146–150. [Google Scholar] [CrossRef]
- Wang, X.; Chu, Z.; Huang, Y.; Chen, G.; Zhao, X.; Zhu, Z.; Chen, C.; Lin, D. Copper Ion Imprinted Hydrogel Photonic Crystal Sensor Film. ACS Appl. Polym. Mater. 2022, 4, 4568–4575. [Google Scholar] [CrossRef]
- Yu, S.; Niu, W.; Wu, S.; Ma, W.; Zhang, S. Robust and flexible thermal-plasticizing 3D shaped composite films with invariable and brilliant structural color. J. Mater. Chem. C 2018, 6, 12814–12821. [Google Scholar] [CrossRef]
- Wu, J.; Niu, W.; Zhang, S.; Wu, S.; Ma, W.; Tang, B. A flexible and robust dual-network supramolecular elastic film with solvent resistance and brilliant structural colors. New J. Chem. 2019, 43, 11517–11523. [Google Scholar] [CrossRef]
- Feng, C.; Takahashi, K.; Zhu, J. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production. Front. Bioeng. Biotech. 2022, 10, 891213. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X. Preparation and self-assembly of photonic crystals on polyester fabrics. Iran. Polym. J. 2017, 26, 107–114. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, S.Y.; Lee, J.M.; Kim, S.H. Designing Structural-Color Patterns Composed of Colloidal Arrays. ACS Appl. Mater. Interfaces 2019, 11, 14485–14509. [Google Scholar] [CrossRef]
- Wu, P.; Shen, X.; Schäfer, C.G.; Pan, J.; Guo, J.; Wang, C. Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale 2019, 11, 20015–20023. [Google Scholar] [CrossRef]
- Peng, C.; Hsu, C.W.; Li, C.; Wang, P.; Jeng, C.; Chang, C.; Wang, G. Flexible Photonic Crystal Material for Multiple Anticounterfeiting Applications. ACS Appl. Mater. Interfaces 2018, 10, 9858–9864. [Google Scholar] [CrossRef]
- Xu, C.; Huang, C.; Yang, D.; Luo, L.; Huang, S. Photo-Luminescent Photonic Crystals for Anti-Counterfeiting. ACS Omega 2022, 7, 7320–7326. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365. [Google Scholar] [CrossRef]
- Chu, L.; Zhang, X.; Niu, W.; Wu, S.; Ma, W.; Tang, B.; Zhang, S. Hollow silica opals/cellulose acetate nanocomposite films with structural colors for anti-counterfeiting of banknotes. J. Mater. Chem. C. 2019, 7, 7411–7417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhao, K.; Yu, Z.; Ye, C. Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization. Polymers 2023, 15, 2635. https://doi.org/10.3390/polym15122635
Zhao Y, Zhao K, Yu Z, Ye C. Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization. Polymers. 2023; 15(12):2635. https://doi.org/10.3390/polym15122635
Chicago/Turabian StyleZhao, Yanbo, Kai Zhao, Zhumin Yu, and Changqing Ye. 2023. "Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization" Polymers 15, no. 12: 2635. https://doi.org/10.3390/polym15122635
APA StyleZhao, Y., Zhao, K., Yu, Z., & Ye, C. (2023). Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization. Polymers, 15(12), 2635. https://doi.org/10.3390/polym15122635