Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Assemblage of Two-Stage Gradient MPL
2.3. Characterization and Test Methods
3. PEMFC Performance Test Process
3.1. Polarization and Power Density Tests
3.2. Electrochemical Impedance Tests
4. Results and Discussion
4.1. Single Cell Performances
4.1.1. Polarization Test Analysis
4.1.2. Power Density Test Analysis
4.2. Electrochemical Impedance Spectroscopy Test
4.3. Surface Hydrophobicity of GDLs
4.4. Electrical Resistivity of GDLs
4.5. SEM Characterization of GDLs
4.6. Surface Roughness Characterization of GDLs
4.7. Porosity Characterization of GDLs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Chen, L.; Ismail, S.A.; Jiang, L.; Guo, S.; Gu, J.; Zhang, X.; Li, Y.; Zhu, Y.; Zhang, Z. Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review. Materials 2022, 15, 8800. [Google Scholar] [CrossRef] [PubMed]
- Alanne, K.; Cao, S. An overview of the concept and technology of ubiquitous energy. Appl. Energy 2019, 238, 284–302. [Google Scholar] [CrossRef]
- Ijaodola, O.; El-Hassan, Z.; Ogungbemi, E.; Khatib, F.; Wilberforce, T.; Thompson, J.; Olabi, A. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 2019, 179, 246–267. [Google Scholar] [CrossRef]
- Majlan, E.; Rohendi, D.; Daud, W.; Husaini, T.; Haque, M. Electrode for proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2018, 89, 117–134. [Google Scholar] [CrossRef]
- Kim, D.J.; Jo, M.J.; Nam, S.Y. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 2015, 21, 36–52. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.; Li, J.; Wang, W. Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 4649–4658. [Google Scholar] [CrossRef]
- Ozden, A.; Shahgaldi, S.; Li, X.; Hamdullahpur, F. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 2019, 74, 50–102. [Google Scholar] [CrossRef]
- Barbir, F. Chapter four—Main cell components, material properties, and processes. In PEM Fuel Cells; Academic Press: Boston, MA, USA, 2013; pp. 73–117. [Google Scholar]
- Jayakumar, A.; Sethu, S.P.; Ramos, M.; Robertson, J.; Al-Jumaily, A. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 2015, 21, 1–18. [Google Scholar] [CrossRef]
- Raman, S.; Iyeswaria, K.; Narasimhan, S.; Rengaswamy, R. Effects of water induced pore blockage and mitigation strategies in low temperature PEM fuel cells—A simulation study. Int. J. Hydrogen Energy 2017, 42, 23799–23813. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Falcão, D.; Oliveira, V.; Pinto, A. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment. Electrochim. Acta 2017, 224, 337–345. [Google Scholar] [CrossRef]
- Ito, H.; Heo, Y.; Ishida, M.; Nakano, A.; Someya, S.; Munakata, T. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells. J. Power Sources 2017, 342, 393–404. [Google Scholar] [CrossRef]
- Mahnama, S.; Khayat, M. Three dimensional investigation of the effect of MPL characteristics on water saturation in PEM fuel cells. J. Renew. Sustain. Energy 2017, 9, 014301. [Google Scholar] [CrossRef]
- Guo, L.; Chen, L.; Zhang, R.; Peng, M.; Tao, W.Q. Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity. Energy 2022, 253, 124101. [Google Scholar] [CrossRef]
- Chun, J.H.; Jo, D.H.; Kim, S.G.; Park, S.H.; Lee, C.H.; Lee, E.S.; Jyoung, J.Y.; Kim, S.H. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells. Renew. Energy 2013, 58, 28–33. [Google Scholar] [CrossRef]
- Sim, J.; Kang, M.; Kim, J.; Min, K. Effects of operating conditions, various properties of the gas diffusion layer, and shape of endplate on the open-cathode proton exchange membrane fuel cell performance. Renew. Energy 2022, 196, 40–51. [Google Scholar] [CrossRef]
- Sim, J.; Kang, M.; Min, K. Effects of porosity gradient and average pore size in the in-plane direction and disposition of perforations in the gas diffusion layer on the performance of proton exchange membrane fuel cells. J. Power Sources 2022, 544, 231912. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Fan, Z.; Li, W.; Wang, S.; Li, X.; Zhao, Y.; Zhu, T.; Xie, X. Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2017, 42, 29995–30003. [Google Scholar] [CrossRef]
- Ren, G.; Qu, Z.; Wang, X.; Zhang, G. Enhancing the performance of proton exchange membrane fuel cell using nanostructure gas diffusion layers with gradient pore structures. Int. J. Hydrogen Energy, 2023; in press. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C. The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells. Fuel 2018, 222, 465–474. [Google Scholar] [CrossRef]
- Morgan, J.M.; Datta, R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. J. Power Sources 2014, 251, 269–278. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y. Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell. Ceram. Int. 2023, 49, 9371–9381. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Ma, Q.; Xu, Q.; Barron, O.; Hooshyari, K.; Su, H. Efficient and durable gas diffusion electrode for proton exchange membrane fuel cell via in-situ growth of Pt nanowires on dual microporous layer. J. Power Sources 2022, 525, 231153. [Google Scholar] [CrossRef]
- Hou, S.; Ye, Y.; Liao, S.; Ren, J.; Wang, H.; Yang, P.; Du, K.; Li, J.; Peng, H. Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer. Int. J. Hydrogen Energy 2020, 45, 937–944. [Google Scholar] [CrossRef]
- Laoun, B.; Kasat, H.A.; Ahmad, R.; Kannan, A.M. Gas diffusion layer development using design of experiments for the optimization of a proton exchange membrane fuel cell performance. Energy 2018, 151, 689–695. [Google Scholar] [CrossRef]
- Latorrata, S.; Stampino, P.G.; Cristiani, C.; Dotelli, G. Novel superhydrophobic microporous layers for enhanced performance and efficient water management in PEM fuel cells. Int. J. Hydrogen Energy 2014, 39, 5350–5357. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Zhang, Z.; Li, H.; Wang, X. Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell. Appl. Energy 2022, 320, 119248. [Google Scholar] [CrossRef]
- Antonacci, P.; Chevalier, S.; Lee, J.; Ge, N.; Hinebaugh, J.; Yip, R.; Tabuchi, Y.; Kotaka, T.; Bazylak, A. Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities. Electrochim. Acta 2016, 188, 888–897. [Google Scholar] [CrossRef]
- Amani, B.; Zanj, A. Analysis of the effects of the gas diffusion layer properties on the effectiveness of baffled flow channels in improving proton exchange membrane fuel cells performance. Int. Commun. Heat Mass Transf. 2023, 140, 106558. [Google Scholar] [CrossRef]
- Lin, G.; Liu, S.; Qu, S.; Qu, G.; Li, T.; Liang, Z.; Hu, Y.; Liu, F. Effects of thickness and hydrophobicity of double microporous layer on the performance in proton exchange membrane fuel cells. J. Appl. Polym. Sci. 2021, 138, 50355. [Google Scholar] [CrossRef]
- Nam, J.H.; Kaviany, M. Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium. Int. J. Heat Mass Transf. 2003, 46, 4595–4611. [Google Scholar] [CrossRef]
- Pasaogullari, U.; Wang, C.Y.; Chen, K.S. Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media. J. Electrochem. Soc. 2005, 152, A1574. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.; Oh, H.; Min, K.; Lee, E.; Jyoung, J.Y. Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses. Appl. Energy 2013, 111, 300–309. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Yang, Y. Effects of gas diffusion layer porosity distribution on proton exchange membrane fuel cell. Energy Technol. 2021, 9, 2001012. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, C.; Wang, X. Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells. Energy 2010, 35, 4786–4794. [Google Scholar] [CrossRef]
- Chu, H.; Yeh, C.; Chen, F. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. J. Power Sources 2003, 123, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Oh, H.; Lee, Y.I. Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance. Appl. Energy 2016, 171, 200–212. [Google Scholar] [CrossRef]
- Lin, G.; Liu, S.; Qu, G. Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance. Int. J. Energy Res. 2021, 45, 7689–7702. [Google Scholar] [CrossRef]
- Lin, G.; Liu, S.; Yu, B. Preparation of graded microporous layers for enhanced water management in fuel cells. J. Appl. Polym. Sci. 2020, 137, 49564. [Google Scholar] [CrossRef]
Samples | NaHCO3:Vulcan XC-72 + PTFE | MPL Thickness (μm) | PTFE (wt.%) | |
---|---|---|---|---|
MPL1 | MPL2 | |||
GDL01 | 1:4 | 1:4 | 60.0 ± 1.8 | 30.0 |
GDL02 | 1:2 | 1:2 | 60.0 ± 2.1 | 30.0 |
GDL03 | 1:2 | 1:4 | 60.0 ± 2.0 | 30.0 |
GDL04 | 1:4 | 1:2 | 60.0 ± 2.2 | 30.0 |
ML/g | 7–20 μm | 20–50 μm | 50–100 μm |
---|---|---|---|
GDL29BC | 2.61 | 6.24 | 9.56 |
GDL01 | 3.08 | 23.65 | 3.77 |
GDL02 | 22.90 | 25.40 | 4.22 |
GDL03 | 24.99 | 36.40 | 4.57 |
GDL04 | 8.68 | 31.60 | 7.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhang, H.; Huang, Z.; Zhao, M.; Chen, H.; Lin, G. Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells. Polymers 2023, 15, 2740. https://doi.org/10.3390/polym15122740
Zhao C, Zhang H, Huang Z, Zhao M, Chen H, Lin G. Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells. Polymers. 2023; 15(12):2740. https://doi.org/10.3390/polym15122740
Chicago/Turabian StyleZhao, Chongxue, Haihang Zhang, Zheng Huang, Meng Zhao, Haiming Chen, and Guangyi Lin. 2023. "Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells" Polymers 15, no. 12: 2740. https://doi.org/10.3390/polym15122740
APA StyleZhao, C., Zhang, H., Huang, Z., Zhao, M., Chen, H., & Lin, G. (2023). Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells. Polymers, 15(12), 2740. https://doi.org/10.3390/polym15122740