Effects of the Solvent Vapor Exposure on the Optical Properties and Photocatalytic Behavior of Cellulose Acetate/Perylene Free-Standing Films
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of CA/Pr Free-Standing Films
2.3. Characterization Techniques
2.4. Solvent Vapor Exposure Experiments
2.5. Photocatalysis Experiments
3. Results and Discussion
3.1. Optical Properties
3.2. Wettability Properties
3.3. Topographical Properties
3.4. Photocatalysis Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cicoira, F.; Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 2007, 17, 3421–3434. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kweon, O.Y.; Kim, H.; Yoo, J.H.; Han, S.G.; Oh, J.H. Recent Advances in Organic Sensors for Health Self-Monitoring Systems. J. Mater. Chem. C Mater. 2018, 6, 8569–8612. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in Stability of Organic Solar Cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Masoumi, S.; Gedefaw, D.; O’Shaughnessy, S.; Baran, D.; Pakdel, A. Flexible Solar and Thermal Energy Conversion Devices: Organic Photovoltaics (OPVs), Organic Thermoelectric Generators (OTEGs) and Hybrid PV-TEG Systems. Appl. Mater. Today 2022, 29, 101614. [Google Scholar] [CrossRef]
- Rahman, M.; Tian, H.; Edvinsson, T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew. Chem. 2020, 132, 16418–16433. [Google Scholar] [CrossRef]
- Shao, Q.; Xing, B. Photoactive Molecules for Applications in Molecular Imaging and Cell Biology. Chem. Soc. Rev. 2010, 39, 2835. [Google Scholar] [CrossRef]
- Mola, G.T.; Dlamini, W.E.; Oseni, S.O. Improving Optical Absorption Bandwidth Using Bi-Layer Bulkheterojunction Organic Photoactive Medium. J. Mater. Sci. Mater. Electron. 2016, 27, 11628–11633. [Google Scholar] [CrossRef]
- Yan, D.; Lu, J.; Wei, M.; Qin, S.; Chen, L.; Zhang, S.; Evans, D.G.; Duan, X. Heterogeneous Transparent Ultrathin Films with Tunable-Color Luminescence Based on the Assembly of Photoactive Organic Molecules and Layered Double Hydroxides. Adv. Funct. Mater. 2011, 21, 2497–2505. [Google Scholar] [CrossRef]
- Bianco, A.; Minella, M.; De Laurentiis, E.; Maurino, V.; Minero, C.; Vione, D. Photochemical Generation of Photoactive Compounds with Fulvic-like and Humic-like Fluorescence in Aqueous Solution. Chemosphere 2014, 111, 529–536. [Google Scholar] [CrossRef]
- Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W.; Li, L.; An, Z.; et al. Visible-Light-Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Adv. Mater. 2017, 29, 1701244. [Google Scholar] [CrossRef]
- Mo, Z.; Di, J.; Yan, P.; Lv, C.; Zhu, X.; Liu, D.; Song, Y.; Liu, C.; Yu, Q.; Li, H.; et al. An All-Organic D-A System for Visible-Light-Driven Overall Water Splitting. Small 2020, 16, 2003914. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Slattum, P.; Wang, C.; Zang, L. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chem. Rev. 2015, 115, 11967–11998. [Google Scholar] [CrossRef] [PubMed]
- Avlasevich, Y.; Li, C.; Müllen, K. Synthesis and Applications of Core-Enlarged Perylene Dyes. J. Mater. Chem. 2010, 20, 3814. [Google Scholar] [CrossRef]
- Gupta, R.K.; Sudhakar, A.A. Perylene-Based Liquid Crystals as Materials for Organic Electronics Applications. Langmuir 2019, 35, 2455–2479. [Google Scholar] [CrossRef]
- Krieg, E.; Niazov-Elkan, A.; Cohen, E.; Tsarfati, Y.; Rybtchinski, B. Noncovalent Aqua Materials Based on Perylene Diimides. Acc. Chem. Res. 2019, 52, 2634–2646. [Google Scholar] [CrossRef]
- Rahmati, M.; Dayneko, S.V.; Pahlevani, M.; Welch, G.C. Interlayer Engineering of Flexible and Large-Area Red Organic-Light-Emitting Diodes Based on an N-Annulated Perylene Diimide Dimer. ACS Appl. Electron. Mater. 2020, 2, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Fennel, F.; Gershberg, J.; Stolte, M.; Würthner, F. Fluorescence Quantum Yields of Dye Aggregates: A Showcase Example Based on Self-Assembled Perylene Bisimide Dimers. Phys. Chem. Chem. Phys. 2018, 20, 7612–7620. [Google Scholar] [CrossRef]
- Shivanna, R.; Shoaee, S.; Dimitrov, S.; Kandappa, S.K.; Rajaram, S.; Durrant, J.R.; Narayan, K.S. Charge Generation and Transport in Efficient Organic Bulk Heterojunction Solar Cells with a Perylene Acceptor. Energy Environ. Sci. 2014, 7, 435–441. [Google Scholar] [CrossRef]
- Kozma, E.; Catellani, M. Perylene Diimides Based Materials for Organic Solar Cells. Dye. Pigment. 2013, 98, 160–179. [Google Scholar] [CrossRef]
- Shan, B.; Nayak, A.; Brennaman, M.K.; Liu, M.; Marquard, S.L.; Eberhart, M.S.; Meyer, T.J. Controlling Vertical and Lateral Electron Migration Using a Bifunctional Chromophore Assembly in Dye-Sensitized Photoelectrosynthesis Cells. J. Am. Chem. Soc. 2018, 140, 6493–6500. [Google Scholar] [CrossRef]
- Ryan, S.T.J.; Young, R.M.; Henkelis, J.J.; Hafezi, N.; Vermeulen, N.A.; Hennig, A.; Dale, E.J.; Wu, Y.; Krzyaniak, M.D.; Fox, A.; et al. Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems. J. Am. Chem. Soc. 2015, 137, 15299–15307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, V.; Cameron, J.; Wallace, M.; Draper, E.R. Mechanoresponsive Self-Assembled Perylene Bisimide Films. Chem. —A Eur. J. 2020, 26, 9879–9882. [Google Scholar] [CrossRef]
- Damaceanu, M.-D.; Rusu, R.-D.; Bruma, M. Copolyimides Containing Perylene and Hexafluoroisopropylidene Moieties. High Perform. Polym. 2012, 24, 50–57. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Y.; Chi, Y.; Yu, H.; Li, Y.; Jiang, T.; Wei, X.; Shi, J. Self-Assembly, Optical and Electrical Properties of Perylene Diimide Dyes Bearing Unsymmetrical Substituents at Bay Position. Sci. Rep. 2018, 8, 8208. [Google Scholar] [CrossRef]
- Kim, W.S.; Yoon, H.I.; Lee, J.M.; Hwang, T.G.; Kim, H.M.; Lee, H.K.; Kim, S.; Choi, W.J.; Kim, J.P. Substituents Effects on Properties of Perylene Dyes for Spectrum Conversion Film. Dye. Pigment. 2023, 209, 110845. [Google Scholar] [CrossRef]
- El-Bashir, S.M.; Al-Jaghwani, A.A. Perylene-Doped Polycarbonate Coatings for Acrylic Active Greenhouse Luminescent Solar Concentrator Dryers. Results Phys. 2020, 16, 102920. [Google Scholar] [CrossRef]
- Wang, J.; Xun, Z.; Zhao, C.; Liu, Y.; Gu, J.; Huo, P. Converting Soy Protein Isolate into Biomass-Based Polymer Electrolyte by Grafting Modification for High-Performance Supercapacitors. Int. J. Biol. Macromol. 2022, 209, 268–278. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, J.; Wang, J.; Wang, Y.; Sun, J.; Fang, Q. High Performance Low Dielectric Constant Polymer with Good Film-Forming Ability Developed from Renewable Plant Oil (Anethole). Macromol. Chem. Phys. 2018, 219, 1800133. [Google Scholar] [CrossRef]
- Monisha, S.; Mathavan, T.; Selvasekarapandian, S.; Benial, A.M.F.; Latha, M.P. Preparation and Characterization of Cellulose Acetate and Lithium Nitrate for Advanced Electrochemical Devices. Ionics 2017, 23, 2697–2706. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, H.; Jia, H.; Xu, J.; Ma, L.; Zang, Y.; Jiang, P.; Ma, W.; Zhang, Y.; Zhao, W.; et al. Preparation and High Performance of Cellulose Acetate Films by Grafting with Imidazole Ionic Liquid. ACS Omega 2021, 6, 12500–12506. [Google Scholar] [CrossRef]
- Rajeswari, A.; Christy, E.J.S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environ. Chem. Ecotoxicol. 2020, 2, 107–114. [Google Scholar] [CrossRef]
- Dąbczyński, P.; Wójtowicz, G.; Rysz, J. Mutual Diffusion of Model Acceptor/Donor Bilayers under Solvent Vapor Annealing as a Novel Route for Organic Solar Cell Fabrication. Energies 2022, 15, 1033. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Guan, T.; Yuket, S.; Cong, H.; Carton, D.W.; Zhang, N. Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips. ACS Omega 2022, 7, 20104–20117. [Google Scholar] [CrossRef] [PubMed]
- Khasim, S.; Pasha, A.; Lakshmi, M.; Chellasamy, P.; Kadarkarai, M.; Darwish, A.A.A.; Hamdalla, T.A.; Al-Ghamdi, S.A.; Alfadhli, S. Post Treated PEDOT-PSS Films with Excellent Conductivity and Optical Properties as Multifunctional Flexible Electrodes for Possible Optoelectronic and Energy Storage Applications. Opt. Mater. 2022, 125, 112109. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Tan, D.; Xu, P.; Yang, B.; Shi, K.; Zhu, B.; Liu, Q.; Lei, Y.; Liu, S.; et al. Improvement in Mechanical Properties of 3D-Printed PEEK Structure by Nonsolvent Vapor Annealing. Macromol. Rapid Commun. 2022, 43, 2100874. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, M.J.; Ribeiro, A.R.L.; Ribeiro, C.M.R.; Borges, R.A.; Pedrosa, M.F.; Silva, A.M.T.; Silva, C.G.; Faria, J.L. A Technological Approach Using a Metal-Free Immobilized Photocatalyst for the Removal of Pharmaceutical Substances from Urban Wastewaters. Chem. Eng. J. 2023, 459, 141617. [Google Scholar] [CrossRef]
- Panthawan, A.; Sanmuangmoon, P.; Jumrus, N.; Thongpan, W.; Pooseekheaw, P.; Kumpika, T.; Sroila, W.; Kantarak, E.; Tuantranont, A.; Singjai, P.; et al. Photocatalytic Enhancement of a Novel Composite CuAl2O4/TiO2/CuO Films Prepared by Sparking Process. Optik 2020, 224, 165502. [Google Scholar] [CrossRef]
- Han, B.; Hu, Y.H. MoS2 as a Co-catalyst for Photocatalytic Hydrogen Production from Water. Energy Sci. Eng. 2016, 4, 285–304. [Google Scholar] [CrossRef] [Green Version]
- Romero, V.; De la Cruz, N.; Dantas, R.F.; Marco, P.; Giménez, J.; Esplugas, S. Photocatalytic Treatment of Metoprolol and Propranolol. Catal Today 2011, 161, 115–120. [Google Scholar] [CrossRef]
- Mendez-López, M.; Ramos-Hernández, A.; Moreno-Serna, V.; Bonardd, S.; Ramírez, O.; Silva, H.; Inostroza-Rivera, R.; Diaz, D.D.; Leiva, A.; Saldías, C. A Facile Approach for Tuning Optical and Surface Properties of Novel Biobased Alginate/POTE Handleable Films via Solvent Vapor Exposure. Int. J. Biol. Macromol. 2021, 193, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Jessop, I.; Albornoz, J.; Ramírez, O.; Durán, B.; Molero, L.; Bonardd, S.; Kortaberria, G.; Diaz Diaz, D.; Leiva, A.; Saldías, C. Optical, Morphological and Photocatalytic Properties of Biobased Tractable Films of Chitosan/Donor-Acceptor Polymer Blends. Carbohydr. Polym. 2020, 249, 116822. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, O.; Bonardd, S.; Saldías, C.; Radic, D.; Leiva, Á. Biobased Chitosan Nanocomposite Films Containing Gold Nanoparticles: Obtainment, Characterization, and Catalytic Activity Assessment. ACS Appl. Mater. Interfaces 2017, 9, 16561–16570. [Google Scholar] [CrossRef] [PubMed]
- Saldías, C.; Díaz, D.D.; Bonardd, S.; Soto-Marfull, C.; Cordoba, A.; Saldías, S.; Quezada, C.; Radic, D.; Leiva, Á. In Situ Preparation of Film and Hydrogel Bio-Nanocomposites of Chitosan/Fluorescein-Copper with Catalytic Activity. Carbohydr. Polym. 2018, 180, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; Walsh, J.J.; McDonald, T.O.; Zwijnenburg, M.A.; Cameron, P.J.; Cowan, A.J.; Adams, D.J. Air-Stable Photoconductive Films Formed from Perylene Bisimide Gelators. J. Mater. Chem. C 2014, 2, 5570–5575. [Google Scholar] [CrossRef] [Green Version]
- Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D Printing of Multilayered Orodispersible Films with In-Process Drying. Int. J. Pharm. 2020, 575, 118883. [Google Scholar] [CrossRef]
RMS (nm) | |||
---|---|---|---|
Film | 0 h | 3 h | 6 h |
CA/Pr 0.3% | 0.8 | 1.7 | 2.5 |
CA/Pr 0.8% | 1.1 | 1.4 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coderch, G.; Cordoba, A.; Ramírez, O.; Bonardd, S.; Leiva, A.; Häring, M.; Díaz Díaz, D.; Saldias, C. Effects of the Solvent Vapor Exposure on the Optical Properties and Photocatalytic Behavior of Cellulose Acetate/Perylene Free-Standing Films. Polymers 2023, 15, 2787. https://doi.org/10.3390/polym15132787
Coderch G, Cordoba A, Ramírez O, Bonardd S, Leiva A, Häring M, Díaz Díaz D, Saldias C. Effects of the Solvent Vapor Exposure on the Optical Properties and Photocatalytic Behavior of Cellulose Acetate/Perylene Free-Standing Films. Polymers. 2023; 15(13):2787. https://doi.org/10.3390/polym15132787
Chicago/Turabian StyleCoderch, Gustavo, Alexander Cordoba, Oscar Ramírez, Sebastian Bonardd, Angel Leiva, Marleen Häring, David Díaz Díaz, and Cesar Saldias. 2023. "Effects of the Solvent Vapor Exposure on the Optical Properties and Photocatalytic Behavior of Cellulose Acetate/Perylene Free-Standing Films" Polymers 15, no. 13: 2787. https://doi.org/10.3390/polym15132787