Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging
Abstract
:1. Introduction
2. Re-Use and Revalorization of Coffee Residues by Means of Biopolymeric Films Preparations
Coffee Residue | Extracted Sustainable Component |
Supporting Biopolymer | Plasticizer or Compatibilizer | Processing of the Composite | Temperature of Drying | Applications | Reference |
---|---|---|---|---|---|---|---|
Coffee fluor or pulp (CF) | Coffee pulp | Methylcellulose from coffee pulp | Polyethylene glycol—1% v/v | SC—glass plates | 60 °C by 25 min Room T for 2 days | Vehicle for incorporating additives in food packaging | [26] |
Coffee pulp extract | Chitosan | Glycerol—0.90% wt. | SC—Teflon plates | 30° and 40 °C 25 °C by 2 days | Reduction of the microbial contamination in food products | [27] | |
Pectin and cellulose from coffee pulp | Pectin and microcrystalline cellulose from coffee pulp | Glycerol—20% (w/w) from biopolymers | SC—Petri dishes | 45 °C by 16 h | Re-uses of agricultural biomass in food and packaging industries | [28] | |
Coffee mucilage (CM) | Pectin from CM | Pectin from CM | Glycerol—22% pectin weight Tween 20—1:10 pectin | SC—rectangular acrylic mold ES—syringe for the injection of and a rotary drum as the collector | 30 °C by 8 h | Feasible films and coatings for food | [29] |
Coffee husk (CH) | Fibers from CH | High-density PE, maleate PE, wood flour | None | E—twin/single screw | Melting: 160 °C Pumping: 170 °C Die: 170 °C Twin screw: 40 rpm Single screw: 20 rpm | Environmentally friendly alternative for preparation of polymeric composites. | [30] |
Antioxidant extract and cellulose from CH | Starch, poly (e-caprolactone), PLA | Glycerol—30% starch weight. | C—hot-plate press with Teflon sheets | 160 °C by 1 min at 30 bars, followed by 3 min at 130 bars, 3 min cooling cycle | Reduction of light-induced oxidation reactions in food-packaging applications | [31] | |
Dried CH | Starch | Glycerol—30% starch weight | SC—PS Petri dishes | 45 °C by 24 h | Promising alternatives in sustainable food packaging | [32] | |
Coffee silverskin (CS) | Cellulose nanocrystals from CS | PLA | None | E—co-rotating twin-screw with sheet die | Feeder: 170 °C Die: 180 °C Screw: 150 rpm | Limited application in industrial food packaging and medical devices | [33] |
CS functionalized with Alkaline and Palmitoyl-chloride | High-density PE | Maleic anhydride, dicumyl peroxide (reaction initiator) | E—co-rotating screw extruder Micro Injection Molding Machine | Melting: 150 °C Pumping: 160 °C Die: 170 °C Screw: 50 rpm | Reliable applications in aerospace, automotive, and packaging. | [34] | |
Milled CS | PLA, PBS | None | E—twin-screw with film casting | Melting: 160 °C Die: 185 °C Screw: 120 rpm | Production of degradable packaging materials | [4] | |
Spent coffee grounds (SCGs) | Chloroform-based extract from SCGs | PLA, Diatom | Chloroform | SC—Teflon Petri dishes | Fume hood up to 72 h | Enhance mechanical and oxygen barriers for food packaging applications | [35] |
Milled SCGs | Corn starch | Glycerin | SC—polyacrylic molds | Oven at 32 °C, 4 days | Alternative substitute for some types of packages | [36] | |
TEMPO-oxidized cellulose nanofibers from SCG | PVA | None | SC—Teflon square dish | 40 °C overnight in vacuo | Huge number of possibilities due to the compatibility of the composite film | [37] | |
Ball-milled SCG | PLA | None | (1) E—twin screw (2) E—single screw (3) E—blow film | (1) 120 °C in feeding and 180 °C in the die, at 100 rpm (2) From 140 to 180 ºC at 65 rpm (3) Roll speed at 2.3 m/min | Biocomposite films for degradable plastic bags | [12] | |
Macerated organic SCG | PLA | Functionalized oligomers of lactic acid with maleic anhydride | (1) E—twin-screw (2) Injection molding | (1) From hopper to die: 180–185–190–195 °C at 22 rpm (2) 185 ° C (hopper) and 200 °C (injection nozzle) with a clamping force of 75 tons | Promising disposable food-serving utensils and tableware | [38] | |
Antioxidants from SCG | Whey-protein concentrate | Glycerol—40% from supported biopolymer | SC—Teflon dishes | 25 ± 2 °C for 24 h, peeled off and conditioned for 48 h with magnesium nitrate | Preparation of edible films with a fundamental circular economy | [39] |
2.1. Coffee Flour Residues
2.2. Coffee Mucilage Residues
2.3. Coffee-Husk Residues
2.4. Coffee Silverskin Residues
2.5. Spent Coffee Ground Residues
3. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McNutt, J.; He, Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Dave Oomah, B. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- FAO. Stadistical Yearbook Mexico; FAO: Rome, Italy, 2021. [Google Scholar]
- Ghazvini, A.K.A.; Ormondroyd, G.; Curling, S.; Saccani, A.; Sisti, L. An Investigation on the Possible Use of Coffee Silverskin in PLA/PBS Composites. J. Appl. Polym. Sci. 2022, 139, 52264. [Google Scholar] [CrossRef]
- Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. The Wastes of Coffee Bean Processing for Utilization in Food: A Review. J. Food Sci. Technol. 2022, 59, 429–444. [Google Scholar] [CrossRef]
- Oliveira, G.; Passos, C.P.; Ferreira, P.; Coimbra, M.A.; Gonçalves, I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021, 10, 683. [Google Scholar] [CrossRef]
- Sengupta, B.; Priyadarshinee, R.; Roy, A.; Banerjee, A.; Malaviya, A.; Singha, S.; Mandal, T.; Kumar, A. Toward Sustainable and Eco-Friendly Production of Coffee: Abatement of Wastewater and Evaluation of Its Potential Valorization. Clean Technol. Environ. Policy 2020, 22, 995–1014. [Google Scholar] [CrossRef]
- Farah, A. Coffee Constituents. In Coffee: Emerging Health Effects and Disease Prevention; Chu, Y.-F., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 21–58. ISBN 9780470958780. [Google Scholar]
- Afriliana, A.; Hidayat, E.; Mitoma, Y.; Masuda, T.; Harada, H. Studies on Composting Spent Coffee Grounds by Aspergillus sp and Aspergillus sp in Aerobic Static Batch Temperature Control. J. Agric. Chem. Environ. 2021, 10, 91–112. [Google Scholar] [CrossRef]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Resendis-Hernández, P.; Gonzalez Victoriano, L.; Méndez-Méndez, J.V.; Cárdenas-Pérez, S.; Calderón Benavides, H.A. Development and Characterization of Biopolymers Films Mechanically Reinforced with Garlic Skin Waste for Fabrication of Compostable Dishes. Food Hydrocoll. 2022, 124, 107252. [Google Scholar] [CrossRef]
- United Nations (UN). General Assembly, Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- Suaduang, N.; Ross, S.; Ross, G.M.; Pratumshat, S.; Mahasaranon, S. Effect of Spent Coffee Grounds Filler on the Physical and Mechanical Properties of Poly(Lactic Acid) Bio-Composite Films. Mater. Today Proc. 2019, 17, 2104–2110. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- European Bioplastics. Available online: https://www.european-bioplastics.org/ (accessed on 23 May 2023).
- Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Rutkowski, S.; Gai, M.; Tverdokhlebov, S.I.; Frueh, J. Copper Alginate Surface for Perpetual Self-Polishing and Anti-Biofouling Compound Release. Appl. Surf. Sci. 2021, 569, 151087. [Google Scholar] [CrossRef]
- Moghadam, H.; Samimi, M.; Samimi, A.; Khorram, M. Electro-Spray of High Viscous Liquids for Producing Mono-Sized Spherical Alginate Beads. Particuology 2008, 6, 271–275. [Google Scholar] [CrossRef]
- Boudaira, B.; Harabi, A.; Bouzerara, F.; Zenikheri, F.; Foughali, L.; Guechi, A. Preparation and Characterization of Membrane Supports for Microfiltration and Ultrafiltration Using Kaolin (DD2) and CaCO3. Desalin. Water Treat. 2016, 57, 5258–5265. [Google Scholar] [CrossRef]
- Lee, H.K.; Park, Y.G.; Jeong, T.; Song, Y.S. Green Nanocomposites Filled with Spent Coffee Grounds. J. Appl. Polym. Sci. 2015, 132, 42043. [Google Scholar] [CrossRef]
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Farmer, N. Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG). In Food Science, Technology and Nutrition; Woodhead Publishing: Southston, UK, 2013; pp. 1–322. ISBN 9780857095039. [Google Scholar]
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Recent Advances and Future Prospects of Cellulose, Starch, Chitosan, Polylactic Acid and Polyhydroxyalkanoates for Sustainable Food Packaging Applications. Int. J. Biol. Macromol. 2022, 221, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable Composites Based on Lignocellulosic Fibers-An Overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Trends in Sustainable Biobased Packaging Materials: A Mini Review. Mater. Today Sustain. 2021, 15, 100084. [Google Scholar] [CrossRef]
- Scully, D.S.; Jaiswal, A.K.; Abu-Ghannam, N. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars. Bioengineering 2016, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Venkatahalapathy, N.; Adwitiya, D. Development of Cellulose Based Packaging Material from Coffee Pulp and Improvement of Its Antioxidant Capacity. Int. J. Agric. Sci. Res. 2015, 5, 363–374. [Google Scholar]
- Jaisan, C.; Punbusayakul, N. Development of Coffee Pulp Extract-Incorporated Chitosan Film and Its Antimicrobial and Antioxidant Activities. KKU Res. J. 2016, 21, 140–149. [Google Scholar]
- Dao, D.N.; Le, P.H.; Do, D.X.; Dang, T.M.Q.; Nguyen, S.K.; Nguyen, V. Pectin and Cellulose Extracted from Coffee Pulps and Their Potential in Formulating Biopolymer Films. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Valdespino-León, M.; Calderón-Domínguez, G.; De La Paz Salgado-Cruz, M.; Rentería-Ortega, M.; Farrera-Rebollo, R.R.; Morales-Sánchez, E.; Gaona-Sánchez, V.A.; Terrazas-Valencia, F. Biodegradable Electrosprayed Pectin Films: An Alternative to Valorize Coffee Mucilage. Waste Biomass Valorizat. 2021, 12, 2477–2494. [Google Scholar] [CrossRef]
- Huang, L.; Mu, B.; Yi, X.; Li, S.; Wang, Q. Sustainable Use of Coffee Husks for Reinforcing Polyethylene Composites. J. Polym. Environ. 2018, 26, 48–58. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Using Lignocellulosic Fractions of Coffee Husk to Improve Properties of Compatibilised Starch-PLA Blend Films. Food Packag. Shelf Life 2019, 22, 10042.3. [Google Scholar] [CrossRef]
- Schutz, G.F.; Alves, R.M.V.; Vieira, R.P. Development of Starch-Based Films Reinforced with Coffee Husks for Packaging Applications. J. Polym. Environ. 2022, 31, 1955–1966. [Google Scholar] [CrossRef]
- Sung, S.H.; Chang, Y.; Han, J. Development of Polylactic Acid Nanocomposite Films Reinforced with Cellulose Nanocrystals Derived from Coffee Silverskin. Carbohydr. Polym. 2017, 169, 495–503. [Google Scholar] [CrossRef]
- Dominici, F.; García, D.G.; Fombuena, V.; Luzi, F.; Puglia, D.; Torre, L.; Balart, R. Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules 2019, 24, 3113. [Google Scholar] [CrossRef] [Green Version]
- Cacciotti, I.; Mori, S.; Cherubini, V.; Nanni, F. Eco-Sustainable Systems Based on Poly(Lactic Acid), Diatomite and Coffee Grounds Extract for Food Packaging. Int. J. Biol. Macromol. 2018, 112, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Gazonato, E.C.; Maia, A.A.D.; Da Silva Moris, V.A.; De Paiva, J.M.F. Thermomechanical Properties of Corn Starch Based Film Reinforced with Coffee Ground Waste as Renewable Resource. Mater. Res. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Kanai, N.; Honda, T.; Yoshihara, N.; Oyama, T.; Naito, A.; Ueda, K.; Kawamura, I. Structural Characterization of Cellulose Nanofibers Isolated from Spent Coffee Grounds and Their Composite Films with Poly(Vinyl Alcohol): A New Non-Wood Source. Cellulose 2020, 27, 5017–5028. [Google Scholar] [CrossRef]
- Terroba-Delicado, E.; Fiori, S.; Gomez-Caturla, J.; Montanes, N.; Sanchez-Nacher, L.; Torres-Giner, S. Valorization of Liquor Waste Derived Spent Coffee Grains for the Development of Injection-Molded Polylactide Pieces of Interest as Disposable Food Packaging and Serving Materials. Foods 2022, 11, 1162. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Kachrimanidou, V.; Lappa, I.K.; Andriotis, H.; Eriotou, E.; Mandala, I.; Kopsahelis, N. Tuning the Physical and Functional Properties of Whey Protein Edible Films: Effect of PH and Inclusion of Antioxidants from Spent Coffee Grounds. Sustain. Chem. Pharm. 2022, 27, 100700. [Google Scholar] [CrossRef]
- Rodríguez Frómeta, R.A.; Sánchez, J.L.; Ros García, J.M. Evaluation of Coffee Pulp as Substrate for Polygalacturonase Production in Solid State Fermentation. Emirates J. Food Agric. 2020, 32, 117–124. [Google Scholar] [CrossRef]
- El Achaby, M.; Ruesgas-Ramón, M.; Fayoud, N.E.H.; Figueroa-Espinoza, M.C.; Trabadelo, V.; Draoui, K.; Ben Youcef, H. Bio-Sourced Porous Cellulose Microfibrils from Coffee Pulp for Wastewater Treatment. Cellulose 2019, 26, 3873–3889. [Google Scholar] [CrossRef]
- Pires, J.R.A.; Souza, V.G.L.; Gomes, L.A.; Coelhoso, I.M.; Godinho, M.H.; Fernando, A.L. Micro and Nanocellulose Extracted from Energy Crops as Reinforcement Agents in Chitosan Films. Ind. Crop. Prod. 2022, 186, 115247. [Google Scholar] [CrossRef]
- Nang An, V.; Chi Nhan, H.T.; Tap, T.D.; Van, T.T.T.; Van Viet, P.; Van Hieu, L. Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes. J. Polym. Environ. 2020, 28, 1465–1474. [Google Scholar] [CrossRef]
- Avallone, S.; Guiraud, J.P.; Guyot, B.; Olguin, E.; Brillouet, J.M. Polysaccharide Constituents of Coffee-Bean Mucilage. J. Food Sci. 2000, 65, 1308–1311. [Google Scholar] [CrossRef]
- Hernández, M.A.; Rodríguez Susa, M.; Andres, Y. Use of Coffee Mucilage as a New Substrate for Hydrogen Production in Anaerobic Co-Digestion with Swine Manure. Bioresour. Technol. 2014, 168, 112–118. [Google Scholar] [CrossRef]
- Pérez-Sariñana, B.Y.; De León-Rodriguez, A.; Saldaña-Trinidad, S.; Joseph, S.P. Optimization of Bioethanol Production from Coffee Mucilage. BioResources 2015, 10, 4326–4338. [Google Scholar] [CrossRef] [Green Version]
- Gaona-Sánchez, V.A.; Calderón-Domínguez, G.; Morales-Sánchez, E.; Chanona-Pérez, J.J.; Velázquez-de la Cruz, G.; Méndez-Méndez, J.V.; Terrés-Rojas, E.; Farrera-Rebollo, R.R. Preparation and Characterisation of Zein Films Obtained by Electrospraying. Food Hydrocoll. 2015, 49, 1–10. [Google Scholar] [CrossRef]
- Gebresemati, M.; Gabbiye, N.; Sahu, O. Sorption of Cyanide from Aqueous Medium by Coffee Husk: Response Surface Methodology. J. Appl. Res. Technol. 2017, 15, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Sarabia-Guarín, A.; Ramírez-Delgado, R.P.; Sánchez-Molina, J. Coffee Husk as Feldspar Substitute in the Manufacture of Enameled Ceramic Tile. Cienc. e Ing. Neogranadina 2020, 30, 21–30. [Google Scholar] [CrossRef]
- Mu, B.; Tang, W.; Liu, T.; Hao, X.; Wang, Q.; Ou, R. Comparative Study of High-Density Polyethylene-Based Biocomposites Reinforced with Various Agricultural Residue Fibers. Ind. Crop. Prod. 2021, 172, 114053. [Google Scholar] [CrossRef]
- Yiga, V.A.; Pagel, S.; Lubwama, M.; Epple, S.; Olupot, P.W.; Bonten, C. Development of Fiber-Reinforced Polypropylene with NaOH Pretreated Rice and Coffee Husks as Fillers: Mechanical and Thermal Properties. J. Thermoplast. Compos. Mater. 2020, 33, 1269–1291. [Google Scholar] [CrossRef]
- Utracki, L.A. Compatibilization of Polymer Blends. Can. J. Chem. Eng. 2002, 80, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Ashter, S.A. Introduction to Bioplastics Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780323393966. [Google Scholar]
- Sunoqrot, S.; Al-Shalabi, E.; Al-Bakri, A.G.; Zalloum, H.; Abu-Irmaileh, B.; Ibrahim, L.H.; Zeno, H. Coffee Bean Polyphenols Can Form Biocompatible Template-Free Antioxidant Nanoparticles with Various Sizes and Distinct Colors. ACS Omega 2021, 6, 2767–2776. [Google Scholar] [CrossRef]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins Produced by the Maillard Reaction: Structure and Biological Activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Bravo, J.; Monente, C.; Juániz, I.; De Peña, M.P.; Cid, C. Influence of Extraction Process on Antioxidant Capacity of Spent Coffee. Food Res. Int. 2013, 50, 610–616. [Google Scholar] [CrossRef]
- Alghooneh, A.; Mohammad Amini, A.; Behrouzian, F.; Razavi, S.M.A. Characterisation of Cellulose from Coffee Silverskin. Int. J. Food Prop. 2017, 20, 2830–2843. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee Silverskin as a Source of Dietary Fiber in Bread-Making: Optimization of Chemical Treatment Using Response Surface Methodology. LWT 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Yadav, M.; Behera, K.; Chang, Y.H.; Chiu, F.C. Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Zhang, B.; Gai, M.; Zheng, C.; Frueh, J.; He, Q. Forecastable and Guidable Bubble-Propelled Microplate Motors for Cell Transport. Macromol. Rapid Commun. 2017, 38, 1600795. [Google Scholar] [CrossRef] [PubMed]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Kourmentza, C.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Spent Coffee Grounds Make Much More than Waste: Exploring Recent Advances and Future Exploitation Strategies for the Valorization of an Emerging Food Waste Stream. J. Clean. Prod. 2018, 172, 980–992. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Varela, J.D.; Medina, D.I. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers 2023, 15, 2823. https://doi.org/10.3390/polym15132823
Hernández-Varela JD, Medina DI. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers. 2023; 15(13):2823. https://doi.org/10.3390/polym15132823
Chicago/Turabian StyleHernández-Varela, Josué D., and Dora I. Medina. 2023. "Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging" Polymers 15, no. 13: 2823. https://doi.org/10.3390/polym15132823
APA StyleHernández-Varela, J. D., & Medina, D. I. (2023). Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers, 15(13), 2823. https://doi.org/10.3390/polym15132823