Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Light Transmittance Measurements
2.3. Temperature Rise
2.4. Statistical Analysis
3. Results
3.1. Light Transmittance Values
3.2. Temperature Rise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- American Academy of Pediatric Dentistry. Pediatric Restorative Dentistry. Pediatr. Dent. 2018, 40, 330–342. [Google Scholar]
- Al-Haj Ali, S.N.; Alsulaim, H.N.; Albarrak, M.I.; Farah, R.I. Spectrophotometric comparison of color stability of microhybrid and nanocomposites following exposure to common soft drinks among adolescents: An in vitro study. Eur. Arch. Paediatr. Dent. 2021, 22, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, G.D.; Yaman-Dosdogru, E.; Selvi-Kuvvetli, S. The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials. Polymers 2022, 14, 1885. [Google Scholar] [CrossRef] [PubMed]
- The first bulk-fill composite. Br. Dent. J. 2014, 94, 216. [CrossRef] [Green Version]
- Oter, B.; Deniz, K.; Cehreli, S.B. Preliminary data on clinical performance of bulk-fill restorations in primary molars. Niger. J. Clin. Pract. 2018, 21, 1484–1491. [Google Scholar]
- Garoushi, S.; Vallittu, P.; Shinya, A.; Lassila, L. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites. Odontology 2016, 104, 291–297. [Google Scholar] [CrossRef]
- Ilie, N.; Furtos, G. A Comparative Study of Light Transmission by Various Dental Restorative Materials and the Tooth Structure. Oper. Dent. 2020, 45, 442–452. [Google Scholar] [CrossRef]
- Mousavinasab, S.M.; Taromi, Z.; Zajkani, E. Thermal rise during photopolymerization and degree of conversion of bulk fill and conventional resin composites. Dent. Res. J. 2020, 17, 293–299. [Google Scholar]
- Altan, H.; Göztas, Z.; Arslanoglu, Z. Bulk-Fill Restorative Materials in Primary Tooth: An Intrapulpal Temperature Changes Study. Contemp. Clin. Dent. 2018, 9 (Suppl. S1), S52–S57. [Google Scholar] [CrossRef]
- Yasa, E.; Atalayin, C.; Karacolak, G.; Sari, T.; Turkun, L.S. Intrapulpal temperature changes during curing of different bulk-fill restorative materials. Dent. Mater. J. 2017, 36, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Grymak, A.; Waddell, J.N.; Choi, J.J.E. The effect of light curing intensity on bulk-fill composite resins: Heat generation and chemomechanical properties. Biomater. Investig. Dent. 2021, 8, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Repusic, I.; Skenderovic, H.; Milat, O.; Spajic, J.; Tarle, Z. The effects of extended curing time and radiant energy on microhardness and temperature rise of conventional and bulk-fill resin composites. Clin. Oral Investig. 2019, 23, 3777–3788. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Son, S.A.; Hwang, J.Y.; Lee, I.B.; Seo, D.G. Comparison of photopolymerization temperature increases in internal and external positions of composite and tooth cavities in real time: Incremental fillings of microhybrid composite vs. bulk filling of bulk fill composite. J. Dent. 2015, 43, 1093–1098. [Google Scholar] [CrossRef]
- Odum, N.C.; Ross, J.T.; Citrin, N.S.; Tantbirojn, D.; Versluis, A. Fast Curing with High-power Curing Lights Affects Depth of Cure and Post-gel Shrinkage and Increases Temperature in Bulk-fill Composites. Oper. Dent. 2023, 48, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Santis, R.; Lodato, V.; Gallicchio, V.; Prisco, D.; Riccitiello, F.; Rengo, S.; Rengo, C. Cuspal Deflection and Temperature Rise of MOD Cavities Restored through the Bulk-Fill and Incremental Layering Techniques Using Flowable and Packable Bulk-Fill Composites. Materials 2020, 13, 5664. [Google Scholar] [CrossRef]
- Nilsen, B.W.; Mouhat, M.; Haukland, T.; Örtengren, U.T.; Mercer, J.B. Heat Development in the Pulp Chamber During Curing Process of Resin-Based Composite Using Multi-Wave LED Light Curing Unit. Clin. Cosmet. Investig. Dent. 2020, 12, 271–280. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Ahmad, Z.H. Adhesive bond integrity of dentin conditioned by photobiomodulation and bonded to bioactive restorative material. Photodiagn. Photodyn. Ther. 2019, 28, 110–113. [Google Scholar] [CrossRef]
- Alrahlah, A. Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative. J. Contemp. Dent. Pract. 2018, 19, 13–19. [Google Scholar] [CrossRef]
- Francois, P.; Fouquet, V.; Attal, J.P.; Dursun, E. Commercially Available Fluoride-Releasing Restorative Materials: A Review and a Proposal for Classification. Materials 2020, 13, 2313. [Google Scholar] [CrossRef]
- De Mendonça, B.C.; Soto-Montero, J.R.; de Castro, E.F.; Kury, M.; Cavalli, V.; Rueggeberg, F.A.; Giannini, M. Effect of extended light ACTIVAtion and increment thickness on physical properties of conventional and bulk-filled resin-based composites. Clin. Oral Investig. 2022, 26, 3141–3150. [Google Scholar] [CrossRef]
- Guiraldo, R.D.; Consani, S.; Consani, R.L.; Berger, S.B.; Mendes, W.B.; Sinhoreti, M.A. Light energy transmission through composite influenced by material shades. Bull. Tokyo Dent. Coll. 2009, 50, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Al-Qudah, A.A.; Mitchell, C.A.; Biagioni, P.A.; Hussey, D.L. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J. Dent. 2007, 35, 238–245. [Google Scholar] [CrossRef]
- Pohto, M.; Scheinin, A. Microscopic Observations on Living Dental Pulp II. The Effect of Thermal Irritants on the Circulation of the Pulp in the Lower Rat Incisor. Acta Odontol. Scand. 1958, 16, 315–327. [Google Scholar] [CrossRef]
- Ilie, N. Impact of light transmittance mode on polymerisation kinetics in bulk-fill resin-based composites. J. Dent. 2017, 63, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Park, S.H.; Hwang, I.N. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper. Dent. 2015, 40, 172–180. [Google Scholar] [CrossRef] [Green Version]
- De Cássia Romano, B.; Soto-Montero, J.; Rueggeberg, F.A.; Giannini, M. Effects of extending duration of exposure to curing light and different measurement methods on depth-of-cure analyses of conventional and bulk-fill composites. Eur. J. Oral Sci. 2020, 128, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Miletic, V.; Swift, M.D.; Bradley, M. Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. J. Dent. 2012, 40, 577–584. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin composites: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef]
- Shimokawa, C.A.K.; Turbino, M.L.; Giannini, M.; Braga, R.R.; Price, R.B. Effect of light curing units on the polymerization of bulk fill resin-based composites. Dent. Mater. 2018, 34, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
Composite Resin Trade Name and Shade | Classification | Composition | Recommended Curing Time and Intensity | Manufacturer |
---|---|---|---|---|
Tetric® N-Ceram Bulk Fill (TBF)- IVA shade | Bulk Fill (Light-cure) | Resin: Dimethacrylates (19–20 weight %) Filler: Barium glass, ytterbium trifluoride (75–77% by weight) | 20 s (≥500 mW/cm2) | Ivoclar Vivadent, Schaan, Liechtenstein Lot No.: Z02WLB |
Filtek™ One Bulk Fill (FBF)- A2 shade | Bulk Fill (Light-cure) | Resin. Bis-GMA, Bis-EMA, UDMA, TEGDMA, EDMAB Filler: zirconia/silica, ytterbium trifluoride (65% by weight). | 40 s 550–1000 mW/cm2 | 3 M ESPE, St. Paul, MN, USA Lot No.: 9177556 |
20 s for > 1000 mW/cm2 | ||||
ACTIVA™ bioactive restorative- A1 shade | Bulk Fill (Dual-cure) | Resin: blend of diurethane and other methacrylates. Filler: Modified polyacrylic acid (44.6%), amorphous silica (6.7%), and sodium fluoride (0.75%) (56% by weight); reactive glass fillers (21.8% by weight). | 20 s 550–1000 mW/cm2 | Pulpdent, Watertown, MA, USA Lot No.: 211119 |
Filtek™ Z250 (FZ)- A1 shade | Conventional-micohybrid | Resin: Bis-GMA, UDMA and Bis-EMA. Filler: 77.5% by weight (0.01 μm to 3.5 μm particles). | 20 s ≥400 mW/cm2 | 3 M ESPE, St. Paul, MN, USA Lot No.: NF27859 |
Factor | Dependent Variables | |||
---|---|---|---|---|
Temperature Rise | Light Transmittance | |||
Partial Eta Squared | p-Value | Partial Eta Squared | p-Value | |
Material | 0.352 | <0.0001 | 0.284 | <0.0001 |
Thickness | 0.044 | 0.308 | 0.638 | <0.0001 |
Material × Thickness | 0.085 | 0.599 | 0.185 | 0.047 |
Material | Thickness | Radiant Power (mW) | Transmitted Irradiance (mW/cm2) | Light Transmittance |
---|---|---|---|---|
TBF | 1 mm | 77.496 ± 19.190 | 154.252 ± 38.197 | 0.200 ± 0.049 A,a |
2 mm | 28.767 ± 20.771 | 57.258 ± 41.343 | 0.074 ± 0.054 b | |
3 mm | 24.354 ± 5.697 | 48.474 ± 11.339 | 0.063 ± 0.015 c | |
4 mm | 13.618 ± 1.675 | 27.107 ± 3.334 | 0.035 ± 0.004 d | |
FBF | 1 mm | 52.325 ± 17.093 | 104.151 ± 34.022 | 0.135 ± 0.044 B,a |
2 mm | 22.443 ± 4.738 | 44.671 ± 9.432 | 0.058 ± 0.012 b | |
3 mm | 15.725 ± 3.721 | 31.299 ± 7.406 | 0.041 ± 0.009 c | |
4 mm | 6.385 ± 1.464 | 12.709 ± 2.913 | 0.017 ± 0.003 d | |
ACTIVA | 1 mm | 92.747 ± 55.433 | 184.608 ± 110.337 | 0.239 ± 0.143 A,a |
2 mm | 44.638 ± 17.403 | 88.849 ± 34.639 | 0.115 ± 0.044 A,b | |
3 mm | 16.739 ± 4.793 | 33.318 ± 9.539 | 0.043 ± 0.012 c | |
4 mm | 12.275 ± 4.996 | 24.433 ± 9.944 | 0.0317 ± 0.012 d | |
FZ | 1 mm | 37.446 ± 20.685 | 74.534 ± 41.172 | 0.097 ± 0.053 C,a |
2 mm | 10.951 ± 3.234 | 21.798 ± 6.437 | 0.028 ± 0.008 B | |
3 mm | 8.556 ± 3.866 | 17.029 ± 7.695 | 0.022 ± 0.009 b | |
4 mm | 4.617 ± 1.509 | 9.191 ± 3.005 | 0.012 ± 0.003 c |
Light transmittance | Amongst resin composites | ACTIVA a > FBF c, FZ d TBF b > FZ d |
Amongst various thicknesses | 1 mm a > 2 b, 3 c, and 4 d mm 2 mm b > 4 mm d | |
Temperature rise | Amongst resin composites | ACTIVA a > TBF b, FBF c, FZ d |
Amongst various thicknesses | The differences were insignificant |
Thickness | Material | ||||
---|---|---|---|---|---|
TBF | FBF | ACTIVA | FZ | ||
1mm | Baseline to maximum (mean) | 24.65–40.90 | 23.35–37.25 | 24.58–43.00 | 26.00–41.28 |
Temperature rise (mean ± SD) | 16.25 ± 4.72 | 13.90 ± 3.13 | 18.42 ± 3.09 | 15.28 ± 8.81 | |
2 mm | Baseline to maximum (mean) | 27.15–43.60 | 26.83–36.02 | 27.80–47.43 | 28.77–37.78 |
Temperature rise (mean ± SD) | 16.45 ± 11.42 | 9.18b ± 3.31 a | 19.63 ± 3.55 b | 9.02 ± 1.36 c | |
3 mm | Baseline to maximum (mean) | 27.35–41.92 | 24.98–36.55 | 28.78–47.63 | 26.18–36.50 |
Temperature rise (mean ± SD) | 14.57 ± 4.49 | 11.57 ± 1.30 | 18.85 ± 4.50 a | 10.32 ± 0.94 b | |
4 mm | Baseline to maximum (mean) | 28.99–42.02 | 25.22–36.30 | 27.08–47.88 | 23.70–34.18 |
Temperature rise (mean ± SD) | 13.03 ± 6.60 a | 11.08 ± 2.97 b | 20.80 ± 4.41 c | 10.48 ± 0.93 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.; Alharbi, E.; Al-Haj Ali, S.N.; Farah, R.I. Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins. Polymers 2023, 15, 2837. https://doi.org/10.3390/polym15132837
Alharbi R, Alharbi E, Al-Haj Ali SN, Farah RI. Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins. Polymers. 2023; 15(13):2837. https://doi.org/10.3390/polym15132837
Chicago/Turabian StyleAlharbi, Reema, Eid Alharbi, Sanaa N. Al-Haj Ali, and Ra’fat I. Farah. 2023. "Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins" Polymers 15, no. 13: 2837. https://doi.org/10.3390/polym15132837
APA StyleAlharbi, R., Alharbi, E., Al-Haj Ali, S. N., & Farah, R. I. (2023). Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins. Polymers, 15(13), 2837. https://doi.org/10.3390/polym15132837