Lauroylated, Acetylated, and Succinylated Agave tequilana Fructans Fractions: Structural Characterization, Prebiotic, Antibacterial Activity and Their Effect on Lactobacillus paracasei under Gastrointestinal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fructans Modification (Lauroylated, Acetylated, and Succinylated)
2.3. Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR-ATR)
2.4. H1 NMR Spectroscopy
2.5. Prebiotic-Viable Cell Count Assay
2.6. Simulated GI Digestion of the Modified Fractions
2.7. Antibacterial Activity (Microdilution Method)
2.8. Statistical Analysis
3. Results
3.1. Characterization by FTIR and 1H NMR
3.2. Solubility of Agave Fructans Fractions Modified
3.3. Prebiotic Activity of Modified Agave Fructans Fractions
3.4. Antibacterial Activity of the Modified Fructans Fractions
3.5. Effect of Modified fructans on the Survival of Lactobacillus Paracasei under Simulated Gastrointestinal Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nava-Cruz, N.Y.; Medina-Morales, M.A.; Martinez, J.L.; Rodriguez, R.; Aguilar, C.N. Agave biotechnology: An overview. Crit. Rev. Biotechnol. 2015, 35, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Santiago-García, P.A.; Mellado-Mojica, E.; León-Martínez, F.M.; Dzul-Cauich, J.G.; López, M.G.; García-Vieyra, M.I. Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. LWT Food Sci. Technol. 2021, 140, 110846. [Google Scholar] [CrossRef]
- Ceja-Medina, L.I.; Ortiz-Basurto, R.I.; Medina-Torres, L.; Calderas, F.; Bernad-Bernad, M.J.; González-Laredo, R.F.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; González-Ávila, M.; Andrade-González, I.; et al. Microencapsulation of Lactobacillus plantarum by spray drying with mixtures of Aloe vera mucilage and agave fructans as wall materials. J. Food Process Eng. 2020, 43, e13436. [Google Scholar] [CrossRef]
- García-Gamboa, R.; Ortiz-Basurto, R.I.; Calderón-Santoyo, M.; Bravo-Madrigal, B.E.; Ruiz-Álvarez, M.; González-Ávila, M. In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: A comparison based on polymerization degree. LWT Food Sci. Technol. 2018, 92, 380–387. [Google Scholar] [CrossRef]
- Miramontes-Corona, C.; Escalante, A.; Delgado, E.; Corona-González, R.I.; Vázquez-Torres, H.; Toriz, G. Hydrophobic agave fructans for sustained drug delivery to the human colon. React. Funct. Polym. 2020, 146, 104396. [Google Scholar] [CrossRef]
- Mirzaaghaei, M.; Nasirpour, A.; Keramal, J.; Hossein, G.S.A.; Dinari, M.; Desobry, S.; Durand, A. Chemical modification of waxy maize starch by esterification with saturated fatty acid chlorides: Syntesis, physicochemical and emulsifyng properties. Food Chem. 2022, 392, 133293. [Google Scholar] [CrossRef]
- Bajaj, R.; Singh, N.; Kaur, A. Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise. Int. J. Biol. Macromol. 2019, 131, 147–157. [Google Scholar] [CrossRef]
- Ignot-Gutiérrez, A.; Ortiz-Basurto, R.I.; García-Barradas, O.; Díaz-Ramos, D.I.; Jiménez-Fernández, M. Physicochemical and functional properties of native and modified agave fructans by acylation. Carbohydr. Polym. 2020, 245, 116529. [Google Scholar] [CrossRef]
- Mbougueng, P.D.; Tenin, D.; Scher, J.; Tchiégang, C. Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food Eng. 2012, 108, 320–326. [Google Scholar] [CrossRef]
- Huang, Z.; Zong, M.H.; Lou, W.Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocoll. 2022, 124, 107217. [Google Scholar] [CrossRef]
- Chang, R.; Xiong, L.; Li, M.; Chen, H.; Xiao, J.; Wang, S.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Preparation of octenyl succinic anhydride-modified debranched starch vesicles for loading of hydrophilic functional ingredients. Food Hydrocoll. 2019, 94, 546–552. [Google Scholar] [CrossRef]
- Maedeh, O.A.; Mohammad, S.Y.; Faramarz, K.; Mohammad, M.; Mohammad, G.; Kennedy, J.F.; Seyed, S.H. Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: Optimization, physicochemical, structural and functional properties. Int. J. Biol. Macromol. 2020, 164, 3485–3495. [Google Scholar] [CrossRef]
- Castañeda-Salazar, A.; Figueroa-Cárdenas, M.G.; López, M.G.; Mendoza, S. Physicochemical and functional characterization of agave fructans modified by cationization and carboxymethylation. Carbohydr. Polym. Technol. Appl. 2023, 5, 100284. [Google Scholar] [CrossRef]
- Han, L.; Ratcliffe, I.; Williams, P.A. Synthesis, characterization and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides. Carbohydr. Polym. 2017, 178, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starbird, R.; Zuñiga, V.; Delgado, E.; Saake, B.; Toriz, G. Design of Microspheres for Drug Delivery to the Colon from Blu Agave Fructans. Part 1. Esterification of Agave Fructans. J. Biobased Mater. Bioenergy 2007, 1, 238–244. [Google Scholar] [CrossRef]
- Arrizon, J.; Hernández, M.A.; Toksoy, O.E.; González, A.M. In vitro prebiotic activity of fructans with different fructosyl linkage for symbiotics elaboration. Int. J. Probiotics Prebiotics 2014, 9, 69–76. [Google Scholar]
- Castro, R.D.; Hernández, S.H.; Yáñez, F.J. Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel Agave salmiana. Probiotics Antimicrob. Proteins 2015, 7, 107–117. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Domig, K.J.; Mair, C.; Zitz, U.; Huys, G.; Kneifel, W. Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl. Environ. Microbiol. 2008, 74, 3745–3748. [Google Scholar] [CrossRef] [Green Version]
- Buitrago-Arias, C.; Londoño-Moreno, A.; Avila-Reyes, S.V.; Arenas-Ocampo, M.L.; Alamilla-Beltran, L.; Jiménez-Aparicio, A.R.; Camacho-Díaz, B.H. Evaluation of the fermentation of acetylated agave fructans (agavins), with Saccharomyces boulardii as a probiotic. Rev. Mex. Ing. Quim. 2021, 20, POLY2533. [Google Scholar] [CrossRef]
- Wang, C.; He, X.; Huang, Q.; Fu, X.; Luo, F.; Li, L. Distribution of octenyl succinic substituents in modified A and B polymorph starch granules. J. Agric. Food Chem. 2013, 61, 12492–12498. [Google Scholar] [CrossRef]
- Wang, C.; Tang, C.H.; Fu, X.; Huang, Q.; Zhang, B. Granular size of potato starch affects structural properties, octenylsuccinic anhydride modification and flowability. Food Chem. 2016, 212, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Namazi, H.; Fathi, F.; Dadkhah, A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci. Iran. 2011, 18, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Miramontes-Corona, C.; Escalante, M.A.; Delgado, E.; Corona, R.I.; Vázquez, H.; Toriz, G. Characterization of modified agave fructans used as drug carriers to the colon by spectroscopy techniques. Infrared Rem. Sens. Instrum. 2019, 26, 111280X. [Google Scholar] [CrossRef]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty Acids Derivatives as Antimicrobial Agents. Am. Soc. Microbiol. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taresco, V.; Suksiriworapong, J.; Creasey, R.; Burley, J.C.; Mantovani, G.C.; Treacher, K.; Booth, J.; Garnett, M.C. Properties of acyl modified poly (glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3267–3278. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.A.; Sood, V.; Bora, M.; Vasita, R.; Katti, D.S.K. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydr. Polym. 2014, 112, 225–234. [Google Scholar] [CrossRef]
- Petkova, N.T.; Tumbarski, Y.D.; Ivanov, I.I.; Denev, P.P. Design of inulin acetates with potential antimicrobial activity. Bulg. J. Vet. Med. 2017, 20, 13–17. [Google Scholar]
- Li, S.; Xiong, Q.P.; Lai, X.P.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular modification of polysaccharides and resulting bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef]
- Mirmoghtadaie, L.; Kadivar, M.; Shahedi, M. Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem. 2009, 114, 127–131. [Google Scholar] [CrossRef]
- Ponnampalam, R.; Delisle, J.; Gagne, Y.; Amiot, J. Functional and nutritional properties of acylated rapeseed proteins. J. Am. Oil Chem. Soc. 1990, 67, 531–535. [Google Scholar] [CrossRef]
- Velázquez-Martínez, J.R.; González-Cervantes, R.M.; Hernández-Gallegos, M.A.; Mendiola, R.C.; Aparicio, A.R.J.; Ocampo, M.L.A. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization. Molecules 2014, 19, 12660–12675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Yang, Y.; Yang, G.; Yu, L. Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control 2010, 21, 1257–1262. [Google Scholar] [CrossRef]
- Ren, L.; Hemar, Y.; Perera, C.O.; Lewis, G.; Krissansen, G.W.; Buchanan, P.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact. Carbohydr. Diet. Fibre 2014, 3, 41–51. [Google Scholar] [CrossRef]
- Otu, P.N.Y.; Azumah, B.K.; Cunshan, Z.; Xiaojie, Y.; Adotey, G.; Hackman, H.K.; Osae, R. Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int. J. Biol. Macromol. 2021, 183, 2262–2271. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Zavala, L.; Carasi, P.; Trejo, S.A.; Bronsoms, S.; Serradell, M.; Garrote, G.L.; Abraham, A.G. Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res. Int. 2018, 103, 462–467. [Google Scholar] [CrossRef]
- FAO; WHO. Probiotics in food: Health and nutritional properties and guidelines for evaluation. In Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; World Health Organization: Rome, Italy, 2006; pp. 4–18. Available online: http://www.fao.org/3/a-a0512e.pdf (accessed on 15 February 2023).
- Juárez-Trujillo, N.; Jiménez-Fernández, M.; Franco-Robles, E.; Beristain-Guevara, C.I.; Chacón-López, M.A.; Ortiz-Basurto, R.I. Effect of three-stage encapsulation on survival of emulsified Bifidobacterium animalis subsp. Lactis during processing, storage and simulated gastrointestinal tests. LWT Food Sci. Technol. 2021, 137, 110468. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Ramos, D.I.; Ortiz-Basurto, R.I.; García-Barradas, O.; Chacón-López, M.A.; Montalvo-González, E.; Pascual-Pineda, L.A.; Valenzuela-Vázquez, U.; Jiménez-Fernández, M. Lauroylated, Acetylated, and Succinylated Agave tequilana Fructans Fractions: Structural Characterization, Prebiotic, Antibacterial Activity and Their Effect on Lactobacillus paracasei under Gastrointestinal Conditions. Polymers 2023, 15, 3115. https://doi.org/10.3390/polym15143115
Díaz-Ramos DI, Ortiz-Basurto RI, García-Barradas O, Chacón-López MA, Montalvo-González E, Pascual-Pineda LA, Valenzuela-Vázquez U, Jiménez-Fernández M. Lauroylated, Acetylated, and Succinylated Agave tequilana Fructans Fractions: Structural Characterization, Prebiotic, Antibacterial Activity and Their Effect on Lactobacillus paracasei under Gastrointestinal Conditions. Polymers. 2023; 15(14):3115. https://doi.org/10.3390/polym15143115
Chicago/Turabian StyleDíaz-Ramos, Dafne I., Rosa I. Ortiz-Basurto, Oscar García-Barradas, Martina A. Chacón-López, Efigenia Montalvo-González, Luz A. Pascual-Pineda, Uri Valenzuela-Vázquez, and Maribel Jiménez-Fernández. 2023. "Lauroylated, Acetylated, and Succinylated Agave tequilana Fructans Fractions: Structural Characterization, Prebiotic, Antibacterial Activity and Their Effect on Lactobacillus paracasei under Gastrointestinal Conditions" Polymers 15, no. 14: 3115. https://doi.org/10.3390/polym15143115
APA StyleDíaz-Ramos, D. I., Ortiz-Basurto, R. I., García-Barradas, O., Chacón-López, M. A., Montalvo-González, E., Pascual-Pineda, L. A., Valenzuela-Vázquez, U., & Jiménez-Fernández, M. (2023). Lauroylated, Acetylated, and Succinylated Agave tequilana Fructans Fractions: Structural Characterization, Prebiotic, Antibacterial Activity and Their Effect on Lactobacillus paracasei under Gastrointestinal Conditions. Polymers, 15(14), 3115. https://doi.org/10.3390/polym15143115