The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
4. Discussion
4.1. Time Dependence of Charge Injection
4.2. Electric Field and Temperature Dependence of Charging Currents
4.3. Electric Field and Temperature Dependence of Discharging Current
4.4. Time, Electric Field, and Temperature Dependence of Charge Accumulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.Z.; Zhang, Z.R.; Wang, G.T.; Xu, Z. Modular Multilevel Converter with Embedded Energy Storage for Bidirectional Fault Isolation. IEEE Trans. Power Deliv. 2022, 37, 105–115. [Google Scholar] [CrossRef]
- Lv, C.L.; Liu, J.J.; Zhang, Y.; Lei, W.J.; Lv, G.T. Reliability Modeling for Metallized Film Capacitors Based on Time-Varying Stress Mission Profile and Aging of ESR. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 4311–4319. [Google Scholar] [CrossRef]
- Debnath, S.; Qin, J.C.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, control, and applications of the modular multilevel converter: A review. IEEE Trans. Power Electr. 2015, 30, 37–53. [Google Scholar] [CrossRef]
- Xv, J.Z.; Li, Y.; Lu, F.; Fan, Q.; Zhao, C.Y.; Xiong, X.L.; Qu, H.T. A Review of Suppression Methods for Sub-module Capacitor Voltage Ripple Amplitudes in Modular Multilevel Converters. Proc. CSEE 2019, 39, 14. [Google Scholar]
- Wang, S.S.; Zhou, X.X.; Tang, G.F.; He, Z.Y.; Teng, T.L.; Liu, J. Modeling o f Modular Multi-level Voltage Source Converter. Proc. CSEE 2011, 31, 8. [Google Scholar]
- Guo, X.F.; Zha, K.P.; Cao, J.Z.; Tang, Z.G. Analysis of temperature rise characteristic of metalized film capacitor under operating conditions in modular multi-level converter. Electr. Meas. Instrum. 2019, 56, 14–19. [Google Scholar]
- Jiang, H.Y.; Li, H.; Yi, B.S.; Li, L.; Chen, Q.R.; Li, Z.; Lin, F.C.; Cai, W.; Zhang, H.L. Study on Capacitor Parameters of Flexible HVDC Transmission Project. Power Capacit. React. Power Compens. 2020, 41, 5. [Google Scholar]
- Jiang, W.J.; Ma, K.; Cai, X.; Xin, X.K.; Cao, G.Z.; Zhang, Y.L. Thermal Balancing Strategy Based on Voltage Compensation Method for Capacitors in Modular Multilevel Converter. In Proceedings of the 2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Kiel, Germany, 26–29 June 2022. [Google Scholar]
- Zhao, J.F.; Deng, F.J.; Hu, W.H.; Du, Y.F. Thermal Optimization Strategy Based on Second-Order Harmonic Circulating Current Injection for MMCs. IEEE Access. 2021, 9, 80183–80196. [Google Scholar] [CrossRef]
- Cook, J.; Hones, H.; Mahon, J.; Yu, L.; Krchnavek, R.; Xue, W. Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites. IEEE Trans. Nanotechnol. 2021, 20, 584–590. [Google Scholar] [CrossRef]
- Hjert, A. Multiscale Modelling of a Metallized Film Capacitor for HVDC Applications. Master’s Thesis, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Tan, D.; Zhang, L.; Chen, Q.; Irwin, P. High-Temperature Capacitor Polymer Films. J. Electron. Mater. 2014, 43, 4569–4575. [Google Scholar]
- Nagao, M.; Kosaki, M.; Hase, Y. High Field Conduction and Space Charge Formation in Polypropylene Film. In Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena, Ottawa, ON, Canada, 16–20 October 1988. [Google Scholar]
- Moudoud, M.; Megherbi, M.; Mekious, M.; Lamrous, O. Thermal Aging Effect on Charging and Discharging Currents in Polymers under DC Stress. In Proceedings of the Conference Record of the IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008. [Google Scholar]
- Ho, J.; Jow, T.R. High Field Conduction in Biaxially Oriented Polypropylene at Elevated Temperature. IEEE Trans. Dielectr. Electr. Insul. 2012, 13, 990–995. [Google Scholar] [CrossRef]
- Xing, Z.; Tian, F.; Guo, S.; Zhang, S.; Li, F.; Liang, J.; Cui, H.; Dai, X. Charging and Discharging Current Characteristics of Polypropylene Film under Varied Electric Fields. Energies 2022, 15, 5107. [Google Scholar] [CrossRef]
- Tian, F.; Hou, C. A trap regulated space charge suppression model for LDPE based nanocomposites by simulation and experiment. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2169–2177. [Google Scholar] [CrossRef]
- Huang, Y.; Schadler, L.S. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation. J. Appl. Phys. 2016, 120, 213–234. [Google Scholar] [CrossRef] [Green Version]
- Das Gupta, D.K.; Joyner, K. A study of absorption currents in polypropylene. J. Phys. D Appl. Phys. 1976, 9, 2041–2048. [Google Scholar] [CrossRef]
- Lowell, J. Absorption and conduction currents in polymers A unified model. J. Phys. D Appl. Phys. 1990, 23, 205–210. [Google Scholar] [CrossRef]
- Ran, Z.Y.; Du, B.X.; Xiao, M. High-temperature Breakdown Performance Improvement of Polypropylene Films Based on Micromorphology Control. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1547–1554. [Google Scholar] [CrossRef]
- Diaham, S.; Locatelli, M.L. Space-Charge-Limited Currents in Polyimide Films. Appl. Phys. Lett. 2012, 101, 242905. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Lee, Y.K.; Murarka, S.P. Study on electrical characteristics of fluorinated polyimide film. J. Mater. Sci. 1998, 33, 4105–4109. [Google Scholar] [CrossRef]
- Wu, C.; Li, Z.; Chen, L.; Deshmukh, A.; Cao, Y. High Electric Field Conduction of Polymers at Ambient and Elevated Temperatures. In Proceedings of the 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Richland, WA, USA, 20–23 October 2019. [Google Scholar]
- Kahouli, A.; Gallot-Lavallée, O.; Rain, P.; Lesaint, O.; Guillermin, C.; Lupin, J.M. Dielectric features of two grades of bi-oriented isotactic polypropylene. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Zheng, J.; Li, S. Carrier hopping transport in semi-crystalline isotactic polypropylene thin films: A revisit to the overestimated hopping distance. Polymer 2019, 179, 121650. [Google Scholar] [CrossRef]
- Karanja, P.; Nath, R. Electrical conduction in biaxially-oriented polypropylene. J. Electrost. 1993, 31, 51–63. [Google Scholar] [CrossRef]
- Tian, F. Investigation on the Trap Characteristics and Electrical Properties of Polyethylene Based Nanocomposite; BJTU: Beijing, China, 2012. [Google Scholar]
- Karanja, P.; Nath, R. Charge trapping and conduction in pure and iodine-doped biaxially-oriented polypropylene. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 213–223. [Google Scholar] [CrossRef]
- Preda, I.; Castellon, J.; Agnel, S.; Notingher, P.; Frechette, M.; Heid, T.; Couderc, H.; Freebody, N.; Vaughan, A.S. Conduction Currents and Time to Frequency Domain Transformation for Epoxy Resin Nanocomposites. In Proceedings of the 2013 IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, 30 June–4 July 2013; pp. 1060–1063. [Google Scholar]
- Montanari, G.C. Dielectric Material Properties Investigated Through Space Charge Measurements. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 56–64. [Google Scholar] [CrossRef]
- Montanari, G.C.; Mazzanti, G.; Palmieri, F.; Motori, A.; Perego, G.; Serra, S.G.C. Space-charge trapping and conduction in LDPE, HDPE and XLPE. J. Phys. D Appl. Phys. 2001, 34, 2902–2911. [Google Scholar]
- Boggs, S. Very High Field Phenomena in Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 929–938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Tian, F.; Liang, J.; Cao, J.; Xing, Z. The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films. Polymers 2023, 15, 3123. https://doi.org/10.3390/polym15143123
Zhang S, Tian F, Liang J, Cao J, Xing Z. The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films. Polymers. 2023; 15(14):3123. https://doi.org/10.3390/polym15143123
Chicago/Turabian StyleZhang, Shuting, Fuqiang Tian, Jieyi Liang, Jinmei Cao, and Zhaoliang Xing. 2023. "The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films" Polymers 15, no. 14: 3123. https://doi.org/10.3390/polym15143123
APA StyleZhang, S., Tian, F., Liang, J., Cao, J., & Xing, Z. (2023). The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films. Polymers, 15(14), 3123. https://doi.org/10.3390/polym15143123