The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Wood Samples, Treatment, and Exposure
2.2. Changes in Color Determination
2.3. Changes in Gloss Determination
2.4. Changes in Hydrophobicity Determination and Surface Free Energy
- γS—surface free energy of a solid material,
- γL—surface energy of a liquid,
- γSL—surface energy at the interface of solid material and liquid,
- θ—wetting angle [44].
2.5. Visual Evaluation and Microscopic Analyses
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Požgaj, A.; Chovanec, D.; Kurjatko, S.; Babiak, M. Štruktúra a Vlastnosti Dreva, 1st ed.; Príroda: Bratislava, Slovakia, 1993; p. 485. ISBN 80-07-00600-1. [Google Scholar]
- Čabalová, I.; Výbohová, E.; Igaz, R.; Kristak, L.; Kačík, F.; Antov, P.; Papadopoulos, A.N. Effect of oxidizing thermal modification on the chemical properties and thermal conductivity of Norway spruce (Picea abies L.) wood. Wood Mater. Sci. Eng. 2022, 17, 366–375. [Google Scholar] [CrossRef]
- Nutsch, W. Příručka pro Truhláře, 2nd ed.; Europa-Sobotáles: Praha, Czech Republic, 2006; ISBN 80-86706-14-1. [Google Scholar]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-1-4398-5380-1. [Google Scholar]
- Wagenführ, R. Holzatlas, 6th ed.; Fachbuchverlag: Leipzig, Germany, 2007; p. 816. ISBN 3-446-40649-2. [Google Scholar]
- Dawson, B.S.W.; Singh, A.P.; Kroese, H.W.; Schwitzer, M.A.; Gallagher, S.; Riddiough, S.J.; Wu, S. Enhancing exterior performance of clear coatings through photostabilization of wood. Part 2: Coating and weathering performance. J. Coat. Technol. Res. 2008, 5, 207–219. [Google Scholar] [CrossRef]
- Pánek, M.; Dvořák, O.; Oberhofnerová, E.; Šimůnková, K.; Zeidler, A. Effectiveness of Two Different Hydrophobic Topcoats for Increasing of Durability of Exterior Coating Systems on Oak Wood. Coatings 2019, 9, 280. [Google Scholar] [CrossRef]
- Pánek, M.; Oberhofnerová, E.; Hýsek, Š.; Šedivka, P.; Zeidler, A. Colour Stabilization of Oak, Spruce, Larch and Douglas Fir Heartwood Treated with Mixtures of Nanoparticle Dispersions and UV-Stabilizers after Exposure to UV and VIS-Radiation. Materials 2018, 11, 1653. [Google Scholar] [CrossRef]
- EN 350; Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Material. European Committee for Standardization: Brussels, Belgium, 2019.
- Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface Changes of Selected Hardwoods Due to Weather Conditions. Forests 2018, 9, 557. [Google Scholar] [CrossRef]
- Kropat, M.; Hubbe, M.A.; Laleicke, F. Natural, accelerated, and simulated weathering of wood: A Review. Bioresources 2020, 15, 9998–10062. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019, 26, 100918. [Google Scholar] [CrossRef]
- de Meijer, M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001, 43, 217–225. [Google Scholar] [CrossRef]
- Evans, P.D.; Haase, J.G.; Seman, A.S.B.; Kiguchi, M. The Search for Durable Exterior Clear Coatings for Wood. Coatings 2015, 5, 830–864. [Google Scholar] [CrossRef]
- Zeidler, A.; Borůvka, V.; Černý, J.; Baláš, M. Douglas-fir outperforms most commercial European softwoods. Ind. Crop. Prod. 2022, 181, 114828. [Google Scholar] [CrossRef]
- Bockel, S.; Mayer, I.; Konnerth, J.; Harling, S.; Niemz, P.; Swaboda, C.; Beyer, M.; Bieri, N.; Weiland, G.; Pichelin, F. The role of wood extractives in structural hardwood bonding and their influence on different adhesive systems. Int. J. Adhes. Adhes. 2019, 91, 43–53. [Google Scholar] [CrossRef]
- Tondi, G.; Schnabel, T.; Wieland, S.; Petutschnigg, A. Surface properties of tannin treated wood during natural and artificial weathering. Int. Wood Prod. J. 2013, 4, 150–157. [Google Scholar] [CrossRef]
- Tomak, E.D.; Gonultas, O. The Wood Preservative Potentials of Valonia, Chestnut, Tara and Sulphited Oak Tannins. J. Wood Chem. Technol. 2018, 38, 183–197. [Google Scholar] [CrossRef]
- Sjökvist, T. Coated Norway Spruce: Influence of Wood Characteristics on Water Sorption and Coating Durability. Doctoral Dissertation, Linnaeus University Press, Växjö, Sweden, 2019. [Google Scholar]
- Sandberg, D. Additives in wood products—Today and future development. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Springer: Singapore, 2016; pp. 105–172. [Google Scholar] [CrossRef]
- Reinprecht, L.; Tiňo, R.; Šomšák, M. The Impact of Fungicides, Plasma, UV-Additives and Weathering on the Adhesion Strength of Acrylic and Alkyd Coatings to the Norway Spruce Wood. Coatings 2020, 10, 1111. [Google Scholar] [CrossRef]
- Rao, F.; Zhang, Y.; Bao, M.; Zhang, Z.; Bao, Y.; Li, N.; Chen, Y.; Yu, W. Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings 2019, 9, 533. [Google Scholar] [CrossRef]
- Hýsek, Š.; Żółtowska, S. Novel Lignin–Beeswax adhesive for production of composites from beech and spruce particles. J. Clean. Prod. 2022, 362, 132460. [Google Scholar] [CrossRef]
- Hýsek, Š.; Fidan, H.; Pánek, M.; Böhm, M.; Trgala, K. Water permeability of exterior wood coatings: Waterborne acrylate dispersions for windows. J. Green Build. 2018, 13, 1–16. [Google Scholar] [CrossRef]
- Pánek, M.; Reinprecht, L. Colour stability and surface defects of naturally aged wood treated with transparent paints for exterior constructions. Wood Res. 2014, 59, 421–430. [Google Scholar]
- Nikafshar, S.; McCracken, J.; Dunne, K.; Nejad, M. Improving UV-Stability of epoxy coating using encapsulated halloysite nanotubes with organic UV-Stabilizers and lignin. Prog. Org. Coat. 2021, 151, 105843. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, H.; Li, K.; Yang, Z. Comparison on the Aging of Woods Exposed to Natural Sunlight and Artificial Xenon Light. Polymers 2019, 11, 709. [Google Scholar] [CrossRef]
- Kržišnik, D.; Lesar, B.; Thaler, N.; Humar, M. Influence of Natural and Artificial Weathering on the Colour Change of Different Wood and Wood-Based Materials. Forests 2018, 9, 488. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. The Multifactorial Aspect of Wood Weathering: A Review Based on a Holistic Approach of wood Degradation Protected by Clear Coating. BioResources 2018, 13, 2116–2138. [Google Scholar] [CrossRef]
- Hanifah, N.P.; Martha, R.; Rahayu, I.S.; Darmawan, W.; George, B.; Gérardin, P. Surface characterization and paint bonding quality on chemically and thermally modified short rotation teak wood. Int. Wood Prod. J. 2022, 14, 13–20. [Google Scholar] [CrossRef]
- Jankowska, A.; Zbiec, M.; Kozakiewicz, P.; Koczan, G.; Olenska, S.; Beer, P. The wettability and surface free energy of sawn, sliced and sanded European oak wood. Maderas. Ciencia y Tecnología 2018, 20, 443–454. [Google Scholar] [CrossRef]
- Reinprecht, L.; Mamoňová, M.; Pánek, M.; Kačík, F. The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods. Eur. J. Wood Wood Prod. 2018, 76, 175–190. [Google Scholar] [CrossRef]
- Šimůnková, K.; Hýsek, Š.; Reinprecht, L.; Šobotník, J.; Lišková, T.; Pánek, M. Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Sci. Rep. 2022, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Marais, B.N.; Brischke, C.; Militz, H. Wood durability in terrestrial and aquatic environments–A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2022, 17, 82–105. [Google Scholar] [CrossRef]
- Ugovšek, A.; Šubic, B.; Starman, J.; Rep, G.; Humar, M.; Lesar, B.; Thaler, N.; Brischke, C.; Meyer-Veltrup, L.; Jones, D.; et al. Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Mater. Sci. Eng. 2019, 14, 42–47. [Google Scholar] [CrossRef]
- Žigon, J.; Pavlič, M.; Kibleur, P.; Van Den Bulcke, J.; Petrič, M.; Van Acker, J.; Dahle, S. Treatment of wood with atmospheric plasma discharge: Study of the treatment process, dynamic wettability and interactions with a waterborne coating. Holzforschung 2020, 75, 603–613. [Google Scholar] [CrossRef]
- Kúdela, J.; Sikora, A.; Gondáš, L. Wood Surface Finishing with Transparent Lacquers Intended for Indoor Use, and the Colour Resistance of These Surfaces during Accelerated Aging. Polymers 2023, 15, 747. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, L.; Cao, Y.; Wang, Q.; Guo, C. Preparation and flame retardancy of castor oil based UV-cured flame retardant coating containing P/Si/S on wood surface. Ind. Crop. Prod. 2019, 130, 562–570. [Google Scholar] [CrossRef]
- Żółtowska, S.; Mitterpach, J.; Šedivka, P.; Jeroušek, L.; Pánek, M. Outdoor efficacy of additional hydrophobic treatment of weathered wood by siloxane. Constr. Build. Mater. 2022, 360, 129134. [Google Scholar] [CrossRef]
- Meteorologic Data 3.3.2023 Dostupná z. Available online: http://meteostanice.agrobiologie.cz (accessed on 18 April 2023).
- Tolvaj, L.; Faix, O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. 1. Effect of UV Light. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- EN 927-3; Paints and Varnishes. Coating Materials and Coating Systems for Exterior Wood. Part 3: Natural Weathering Test. European Committee for Standardization: Brussels, Belgium, 2019.
- EN ISO 2813; Paints and Varnishes. Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees. European Committee for Standardization: Brussels, Belgium, 2014.
- Bertolin, C.; de Ferri, L.; Strojecki, M. Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Procedia Struct. Integr. 2020, 26, 147–154. [Google Scholar] [CrossRef]
- Seo, K.; Kim, M. Re-derivation of young’s equation, Wenzel equation, and Cassie-Baxter equation based on energy minimization. In Surface Energy; InTechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Li, Y.-G.; Bao, H.; Deng, W.; Li, Y. Iron-Catalyzed Carboiodination of Alkynes. Synthesis 2018, 50, 2974–2980. [Google Scholar] [CrossRef]
- Pavlič, M.; Petrič, M.; Žigon, J. Interactions of Coating and Wood Flooring Surface System Properties. Coatings 2021, 11, 91. [Google Scholar] [CrossRef]
- Oberhofnerová, E.; Šimůnková, K.; Dvořák, O.; Štěrbová, I.; Hiziroglu, S.; Šedivka, P.; Pánek, M. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Coatings 2019, 9, 864. [Google Scholar] [CrossRef]
Wood | Code | Modification | Code | First Layer | Company | Second Layer | Company | Coating System Number | Number of Sample |
---|---|---|---|---|---|---|---|---|---|
Oak | D | Sealed pores | T | Rhenodecor Trans TIX | (DOMAŽLICE, CZECH REPUBLIC) Rhenocoll© | Protector−Plus | Adler© | 1 | 1, 2, 3 |
Rhenocryl FK 47 High Solid | Rhenocoll© | Protector–Plus | Adler© | 2 | 1, 2, 3 | ||||
Aquawood Ligno + Base | Adler© | Aquawood Ligno + Top | Adler© | 3 | 1, 2, 3 | ||||
Lignofix | Stachema© | Lignofix | Stachema© | 4 | 1, 2, 3 | ||||
Oak | D | Unsealed pores | B | Rhenodecor Trans TIX | Rhenocoll© | Protector–Plus | Adler© | 1 | 1, 2, 3 |
Rhenocryl FK 47 High Solid | Rhenocoll© | Protector–Plus | Adler© | 2 | 1, 2, 3 | ||||
Aquawood Ligno + Base | Adler© | Aquawood Ligno + Top | Adler© | 3 | 1, 2, 3 | ||||
Lignofix | Stachema© | Lignofix | Stachema© | 4 | 1, 2, 3 | ||||
Oak | D | Reference | REF | Natural wood without coating | 1, 2 |
Year | Average Daily Temperature (°C) | Maximum Temperature (°C) | Average Relative Air Humidity (%) | Total Precipitation (mm) | Daily Incident Solar Energy (kJ/m2) | Maximum Solar Energy (kJ/m2) |
---|---|---|---|---|---|---|
2021 | 8.92 | 33.9 | 72.38 | 568.93 | 10,416.25 | 28,424 |
2022 | 10.34 | 37.7 | 68.98 | 472.81 | 11,534.65 | 29,648 |
0.2 > ΔE | Invisible difference |
0.2 < ΔE < 2 | Little difference |
2 < ΔE < 3 | Color change visible with a high-quality filter |
3 < ΔE < 6 | Color change visible with a medium-quality filter |
6 < ΔE < 12 | High color changes |
ΔE > 12 | Different color |
Time of Weathering (Months) | |||||
---|---|---|---|---|---|
0 | 3 | 6 | 12 | 24 | |
B-1 | |||||
T-1 | |||||
B-2 | |||||
T-2 | |||||
B-3 | |||||
T-3 | |||||
B-4 | |||||
T-4 |
Natural Oak—Reference | 12 Months | 24 Months | ||
---|---|---|---|---|
Unmodified | Modified | Unmodified | Modified | |
Modified Surface | Unmodified Surface | |
---|---|---|
Total free surface energy (mN/m) | 42.42 ± 6.85 | 47.12 ± 10.97 |
Dispersion component (mN/m) | 37.48 ± 2.66 | 37.67 ± 2.84 |
Polar component (mN/m) | 4.94 ± 4.19 | 9.45 ± 8.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvořák, O.; Kvietková, M.S.; Šimůnková, K.; Machanec, O.; Pánek, M.; Pastierovič, F.; Lin, C.-F.; Jones, D. The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems. Polymers 2023, 15, 3251. https://doi.org/10.3390/polym15153251
Dvořák O, Kvietková MS, Šimůnková K, Machanec O, Pánek M, Pastierovič F, Lin C-F, Jones D. The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems. Polymers. 2023; 15(15):3251. https://doi.org/10.3390/polym15153251
Chicago/Turabian StyleDvořák, Ondřej, Monika Sarvašová Kvietková, Kristýna Šimůnková, Ondřej Machanec, Miloš Pánek, Filip Pastierovič, Chia-Feng Lin, and Dennis Jones. 2023. "The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems" Polymers 15, no. 15: 3251. https://doi.org/10.3390/polym15153251
APA StyleDvořák, O., Kvietková, M. S., Šimůnková, K., Machanec, O., Pánek, M., Pastierovič, F., Lin, C.-F., & Jones, D. (2023). The Influence of the Initial Treatment of Oak Wood on Increasing the Durability of Exterior Transparent Coating Systems. Polymers, 15(15), 3251. https://doi.org/10.3390/polym15153251